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Abstract 29 

A hybrid forecast model for seasonal hurricane activity in the North Atlantic is 30 

developed using a combined numerical coupled ocean-atmosphere climate and empirical 31 

prediction models. An empirical relationship is built on the number of seasonal hurricane 32 

and the large-scale variables from ECMWF hindcasts based on a 29-yr (1981-2009) 33 

dataset. The increase of seasonal hurricane activity correlates with a negative sea surface 34 

temperature (SST) anomaly over the tropical East Pacific, a positive SST anomaly over 35 

the Main Development Region (MDR) and North Atlantic, and a decrease of wind shear 36 

over the MDR. The North Atlantic SST and the MDR vertical wind shear are selected as 37 

predictors based on sensitivity tests. Forecasts of these predictors are made with the 38 

ECMWF climate model run in ensemble mode thus providing a probability distribution 39 

of hurricane number. The forecast skill of the hybrid model is at least competitive or 40 

better than most publicly-available forecast models but made one month earlier lead-time. 41 

The hybrid model initialized at June and July 2010 forecasts the 2010 hurricane season 42 

active with 9 hurricanes. 43 

44 



1. Introduction 44 

With an increase in North Atlantic (NATL) hurricane activity in the recent decades 45 

[Emanuel 2005, Landsea 2005; Webster et al. 2005; Holland and Webster 2007] and an 46 

increase in the population of coastal areas [Pielke and Landsea 1998, 1999], there has 47 

been a growing demand for extended seasonal forecasts of hurricane activity with lead 48 

times of months. Although the hurricane activity is related directly to local 49 

thermodynamic conditions [Goldenberg et al. 2001; Saunders and Lea 2008], a large 50 

portion of hurricane activity is controlled indirectly by the large-scale atmosphere-ocean 51 

dynamics (such as El Niño Southern Oscillation: ENSO, the Atlantic Multidecadal 52 

Oscillation: AMO, the Atlantic Meridional Mode: AMM, and the North Atlantic 53 

Oscillation: NAO) affecting changes in large-scale circulations on decadal and 54 

interannual timescales [Gray 1984; Goldenberg et al. 2001; Elsner 2003; Bell and 55 

Chelliah 2006; Kossin and Vimont 2007; Camargo et al. 2009; Kim et al. 2009; 56 

Klotzbach 2010; Kossin et al. 2010]. Noting these associations, most hurricane forecasts 57 

are based on empirical relationships between the hurricane activity, sea surface 58 

temperature distributions and the large-scale dynamics. For example, the Colorado State 59 

University (CSU) forecasts of hurricane activity issued in early August for upcoming 60 

season, uses information on the phase of ENSO, sea surface temperature (SST) over the 61 

east Atlantic, sea level pressure (SLP) variability over the tropical Atlantic and the 62 

statistics of storms that have occurred prior to the forecast issuing date [Klotzbach 2007]. 63 

For this class of models, empirical relationships between predictands and predictors are 64 

based on lag relationships from previous seasons. A second method of seasonal hurricane 65 

prediction uses dynamical information from coupled ocean-atmosphere climate models 66 

directly. There has been some success with this methodology. For example, Vitart et al. 67 

[2007] shows substantial skill compared to purely empirical forecasts with the EUROSIP 68 

(EUROpean Seasonal to Inter-annual Prediction) multi-model ensemble of coupled ocean 69 

atmosphere models.  70 

We pose the hypothesis that a combination of the two methodologies may provide 71 

additional skill beyond that of the component models. Here we propose and test a new 72 

hybrid system combining the ECMWF System 3 coupled ocean-atmosphere climate 73 

model (Anderson et al. 2007) and an empirical  linear regression model. In a sense, it is a 74 

Bayesian system where the statistical priors are adjusted by forecasts of the predictors 75 

from the numerical climate model. Wang et al. [2009] made a first attempt using the 76 

hindcasts from the National Centers for Environmental Prediction (NCEP) Climate 77 

Forecast System (CFS) for a 26-yr (1981-2006) period to build an empirical relationship 78 

between the seasonal hurricane numbers and CFS hindcasts for SSTs and vertical wind 79 

shear in the tropical Pacific and Main Development Region (MDR). Their most skillful 80 

forecast uses only wind shear as its predictor. Wang et al [2009] provide competitive skill 81 

with current empirical forecast models. Section 2 introduces details of the numerical and 82 

empirical models and observation data. Section 3 examines the prediction skill of 83 

seasonal hurricane activity and section 4 summarizes the results with discussion. 84 

85 



2. Data and analysis 85 

The hurricane data used in this study are for Saffir-Simpson category storms 1 or 86 

greater obtained from the NOAA Hurricane Best Track Database [Landsea et al. 2004, 87 

http://www.aoml.noaa.gov/hrd/tcfaq/E11.html]. Hurricane activity is measured by the 88 

actual number of hurricanes over the Atlantic hurricane season from 1981 to 2009, a 89 

period that matches the forecast reanalysis data set for the ECMWF System 3.  The 90 

predictand for the hybrid system is the number of hurricanes over the Atlantic.  As the 91 

active hurricane season generally begins in July, the analysis of the large-scale variables 92 

focuses on the seasonal mean compiled from July through October. However, forecasts 93 

based on June data will also be documented. The sea surface temperature (SST) data are 94 

from the Extended Reconstructed Sea Surface Temperature Version 2 [ERSSTv2, Smith 95 

and Reynolds 2004] and the zonal wind data is from ERA 40 set [Uppala et al. 2005] 96 

from 1981 to 1988  and from the ERA interim from 1989 to 2009 [Berrisford et al. 2009]. 97 

The wind shear is defined as the magnitude of zonal wind difference between 850 and 98 

200 hPa.  99 

The ECMWF hindcasts are used to provide predictors in the hybrid forecast model. 100 

Initial conditions for the atmospheric and land surface were obtained from the ERA-40. 101 

The initial conditions for the oceanic component are provided by ECMWF oceanic data 102 

assimilation system [Balmaseda et al. 2005]. The details of ECMWF Seasonal 103 

Forecasting System used in this study are described at site 104 

(http://www.ecmwf.int/products/forecasts/seasonal/documentation/system3). In the 105 

ECMWF Seasonal Forecasting System, on the 1st day of each calendar month eleven 106 

ensemble members of 7-month duration were generated on the 1st day of each month 107 

during the period from 1981 to 2006. The number of ensemble members increased to 41 108 

from 2007 to 2009. Large-scale ocean-atmosphere predictors were formed from July-109 

October SST and wind anomalies generated with July 1st initial condition from the 29 110 

years (1981-2009). 111 

112 



3. Numerical-empirical forecast for seasonal hurricane activity 112 

Predictors from ECMWF forecasts are selected based on their empirical relationship 113 

with the observed number of hurricanes. Figure 1 shows the correlation coefficient of the 114 

inter-annual variation between the observed number of hurricanes in the NATL and both 115 

SST and wind shear anomalies from observation (Figs 1a, b) and from ECMWF forecasts 116 

(Figs 1c, d). 117 

Significant negative correlations are found between the observed East Pacific SST 118 

anomaly and NATL hurricane number (Fig. 1a). This relationship has been well 119 

documented [Gray 1984; Tang and Neelin 2004; Bell and Chelliah 2006; Kim et al. 120 

2009] and related to ENSO variability and the subsequent modulation of vertical wind 121 

shear in the MDR. Seasonal hurricane activity is closely related to variations in NATL 122 

SST variations in the MDR [Goldenberg et al. 2001; Saunders and Lea 2008] and to the 123 

north between 30ºN and 50ºN [Goldenberg et al. 2001; Kossin and Vimont 2007]. These 124 

patterns are similar to the Atlantic Meridional Mode (AMM) and has been shown to be 125 

strongly related to the seasonal hurricane activity on both interannual and decadal 126 

timescales [Kossin and Vimont 2007; Vimont and Kossin 2007].  Related to the AMM 127 

variability, the decrease of wind shear magnitude over the MDR (Fig. 1b) induces an 128 

increase of seasonal hurricane activity. Kossin and Vimont [2007] show further that the 129 

combined positive SST anomaly related decrease in shear during a positive AMM phase 130 

creates an overall favorable environment for hurricane genesis. The interannual 131 

variability of time series between the number of hurricane and the AMM SST index is 132 

highly correlated at 0.76 over the 29 year period (Table 1). AMM SST index is calculated 133 

through projecting SST onto the spatial structure resulting from the maximum covariance 134 

analysis to SST (http://www.esrl.noaa.gov/psd/data/timeseries/monthly/AMM). 135 

The correlations between ECMWF hindcasts and observed seasonal hurricanes (Fig. 136 

1c, d) are similar to those found with observed data with differences arising from model 137 

bias.  While the negative correlation over the tropical Pacific is weaker than observed, the 138 

positive correlation in the North Atlantic SST is stronger and more extensive. Based on 139 

these relationships, from the 11-member ensemble mean,  we select three potential 140 

predictors from SST; the North Atlantic SST (NAS; 330ºE-350ºE, 35º-45ºN), MDR SST 141 

(MS; 280ºE-310ºE, 5-15ºN), and the SST over the Nino 3 region (N3; 210º-270ºE, 5ºS-142 

5ºN). A fourth potential predictor is the vertical wind shear over the MDR (SH; 260º-143 

320ºE, 10º-20ºN).  The hurricane number correlates with the NAS, MDR, N3 and SH 144 

indices at 0.68, 0.61, -0.48 and -0.81, respectively, all exceeding the 99% significance 145 

level of 0.47. In summary, wind shear and both SST indices over the Atlantic are highly 146 

correlated to the seasonal hurricanes while the Nino 3 is relatively weakly correlated than 147 

the others. To forecast the interannual variability of seasonal hurricanes, sensitivity tests 148 

are performed using the four potential predictors singularly or in combination. A multiple 149 

or simple linear-regression model is constructed between the predictors and the observed 150 

number of hurricanes to build an empirical relationship. A cross-validation method 151 

(leaving one-year out) is applied to obtain the regression parameters. Then the parameters 152 

are applied to the predictors of the target year to obtain seasonal forecasts of hurricane 153 

number. Table 1 shows the prediction skill of seasonal hurricanes using the regression 154 

model. Although the prediction skill hovers around 0.6 when only one of the predictors is 155 



used, it improves to >0.7 when two predictors are combined (e.g., SH, NAS, and 156 

SH+NAS case) with the best combination of predictors comes from a combination of SH 157 

and NAS. Including the Nino 3 SST or the MDR SST does not increase the skill score 158 

significantly because the information they impart may be redundant having already  been 159 

included in the vertical wind shear. As a result, we use both the MDR wind shear and the 160 

North Atlantic SST as predictors. Wang et al. [2009] found that the highest skill occurred 161 

when MDR wind shear is used as the only predictor from the CFS seasonal forecast.  162 

Figure 2 shows the seasonal forecast of NATL hurricane number from 1981 to 2009 163 

using the hybrid model. It forecasts a higher number than observed in the period from 164 

1987 to 1989 but a lower number during the most active year of 2005. However, in 1995 165 

and 1998 when the number of hurricanes was near 10, the model performs quite well. In 166 

addition, during the strong warm phase years of ENSO, 1982 and 1997, the deficiency of 167 

hurricane activity was well forecast due to the strong El Nino signal in the MDR wind 168 

shear [Kim et al. 2009]. The correlation and root mean square error (RMSE) between the 169 

observation and the forecast is 0.74 and 2.05 over the period compared to the CSU 170 

forecasts) issued one month later in early August (http://typhoon.atmos.colostate.edu) 171 

with values of 0.58 and 2.12 for the period 1984 to 2008. Does the hybrid scheme do 172 

better than the parent ECMWF system? The ECMWF system during the 1990-2009 173 

period, using data provided by F. Vitart, ECMWF has a correlation with observed NATL 174 

hurricanes of 0.59 and a RMSE of 2.76 for hurricanes forming after August 1. It would 175 

appear that there is added value in the statistical rendering of the numerical model results.  176 

The prediction skill of the hybrid forecast system is fairly competitive and often 177 

better than other scheme, even though our model issues forecasts one month prior to the 178 

other publicly-available seasonal forecasts. Table 2 compares the actual number of 179 

hurricanes and the forecasts issued at late July or early August: CSU, NOAA 180 

(http://www.cpc.noaa.gov/products/outlooks/hurricane-archive.shtml), Tropical Storm 181 

Risk (referred to as TSR, http://www.tropicalstormrisk.com), CFS hybrid forecast 182 

[method 1, Wang et al. 2009] and ECMWF forecast for the  8 years from 2002 to 2009. 183 

For a fair comparison with other forecast schemes, we use the ECMWF forecast issued in 184 

June which forecasts the hurricane number over the period July to December. The 185 

numbers are rounded to the nearest integer and RMSE of each forecast is listed at the 186 

bottom of the table. The relatively high RMS error in ECMWF forecast comes from one-187 

month gap of the target period (JASOND) and the initial condition (June). To compare 188 

our hybrid forecast with ECMWF, hybrid forecasts with June initial condition are listed 189 

in parentheses.  190 

By using the total 41 ensemble members available during 2007, a probability forecast 191 

of hurricane occurrence can be made. To make the forecast for 2007 the ECMWF 192 

prediction from 1981 to 2006 has been used to establish the empirical relationship 193 

between the hurricane number and the ensemble mean forecasts of MDR wind shear and 194 

North Atlantic SST. For the 2008 forecast, data was used form 1981 though 2007 and etc.. 195 

Figure 3 shows the probability density of the forecasts generated by the hybrid model as 196 

well as a comparison with the others forecasts. For 2007 and 2008 case, the hybrid model 197 

shows a close relationship to the actual number compared to the other forecasts. In 2009 198 

the system fails principally because the numerical climate model forecast weaker wind 199 



shear than observed.  200 

201 



 201 

Table 1: Correlation coefficients between the time series of observed and predicted 202 

seasonal hurricanes. The predictors are; the North Atlantic SST (NAS; 330ºE-350ºE, 203 

35º-45ºN), MDR SST (MS; 280ºE-310ºE, 5-15ºN), the SST over the Nino 3 region 204 

(N3; 210º-270ºE, 5ºS-5ºN), and vertical wind shear over the MDR (SH; 260º-320ºE, 205 

10º-20ºN). The limiting value of significant correlation coefficient is 0.47 at the 99% 206 

level. 207 

 208 

 SH MS NAS SH+MS SH+N3 MS+N3 MS+NAS SH+NAS SH+MS+NAS 

CORR 0.6 0.56 0.61 0.65 0.58 0.62 0.62 0.74 0.70 

 209 

 210 

 211 

Table 2. The verification and forecasts of hurricane frequency by several forecast models 212 

from 2002 to 2009. Numbers are rounded to the nearest integer. RMS errors are on the 213 

bottom. Hybrid forecasts with June initial condition are listed in parentheses. 214 

YEAR OBS Hybrid CFS CSU NOAA TSR ECMWF 

Issue  Jul (Jun) IC  Jul-Aug IC Early Aug Early Aug Early Aug Jun 

2002 4 3 (3) 4 4 4-6 4 5 

2003 7 7 (8) 7 8 7-9 7 8 

2004 9 8 (7) 7 7 6-8 8 5 

2005 15 9 (9) 11 10 9-11 11 8 

2006 5 7 (8) 9 7 7-9 8 13 

2007 6 7 (7) 9 8 7-9 8 7 

2008 8 9 (8) 9 9 7-10 10 9 

2009 3 5 (4) 5 4 3-6 7 4 

RMSE  
2.45 (2.57) 

29yr:2.05 
(2.10) 

2.50 2.24 

25yr:2.12 

2.41 2.50 4.09 

20yr:3.62 

 215 

216 



 216 

Table 3: Correlation coefficients between the time series of observed climate indices 217 

(AMM, AMO and NINO3 index) and number of hurricanes from 1970 to 2009. 218 

 Jan Feb Mar Apr May Jun Jul Aug JASO 

AMM 0.32 0.33 0.23 0.28 0.37 0.46 0.57 0.66 0.7 

AMO 0.43 0.46 0.46 0.47 0.52 0.54 0.54 0.57 0.55 

NINO3 -0.02 -0.07 -0.08 -0.11 -0.23 -0.3 -0.27 -0.32 -0.37 

 219 

 220 

 221 

 222 
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 223 

Figure 1: The spatial distribution of correlation coefficients between the inter-annual 224 

variation of the actual number of hurricanes and both SST (top) and wind shear 225 

(bottom) anomalies in (a), (b) observation and (c), (d) ECMWF forecasts of ensemble 226 

mean. 227 

228 



 228 

Figure 2: Number of hurricanes for observation (open circle) and forecast model (cross). 229 

The gray thin line is the average of the observation over 29-yr. The correlation 230 

coefficient between two time series is 0.741. 231 

232 



 232 

 233 

 234 

Figure 3: Probability density of predicted number of hurricanes in a) 2007, b) 2008 and c) 235 

2009 by hybrid model (HYB), CFS, CSU, NOAA, TSR and ECMWF with the actual 236 

hurricane number from observation (OBS).  237 



 238 

Figure 4: Correlation coefficients between the time series of observed climate indices 239 

(AMM, AMO and NINO3 index) and number of hurricanes from 1970 to 2009. 240 

Correlations of NINO3 index are displayed in reversed sign. 241 

 242 

Using predictors from June and July initial condition, the hybrid seasonal hurricane 243 

forecasting system predicts 9 hurricanes for 2010 summer. The above normal number of 244 

hurricanes mainly comes from the weak wind shear anomaly over the MDR accompanied 245 

by strong La Nina condition. The normal SST over the eastern North Atlantic restrains 246 

the increase of number. 247 

4. Conclusion and discussion 248 

A forecast model for the seasonal North Atlantic hurricane activity is developed 249 

using a combined numerical and empirical techniques. The empirical relationship is built 250 

on the number of seasonal hurricane occurrences relative to large-scale variables from 251 

29-year (1981-2009) ECMWF hindcasts for the June to October season. The large-scale 252 

ocean and atmosphere numerical product is related statistically to the seasonal North 253 

Atlantic hurricane activity which is similar to that observed. The increase of seasonal 254 

hurricane activity correlates with a decrease of SST anomaly over the tropical East 255 

Pacific, an increase of SST anomaly over the MDR and North Atlantic and the decrease 256 

of wind shear over the MDR. These large-scale structures of favorable conditions for 257 

hurricanes are close to those found for the positive phase of AMM. Using these four 258 

predictors from the hindcasts, sensitivity tests were performed for the seasonal hurricane 259 

activity forecast. The prediction shows the highest skill when both the North Atlantic 260 

SST and the MDR vertical wind shear are used as predictors.  261 

Through the cross-validation over a 29-yr period, the forecast skill shows at least 262 

competitive with forecasts currently available.  In addition to being competitive skill with 263 



other forecast systems, the forecast is available one month earlier than the other forecasts 264 

that could provide useful information for the end-users, especially those who live in 265 

coastal regions. Moreover, with the advent of increased ensemble numbers, probabilistic 266 

forecast of North Atlantic hurricane number has been attempted by using extension of 267 

ensembles after 2007 (Figure 3). We plan to extend the hybrid system to other parts of 268 

the topics especially the North Pacific.  269 

Another issue that needs to be explored is the influence of multi-decadal and inter-270 

annual climate variability on the tropical cyclone activity. Figure 4 (or Table 3) shows the 271 

correlation coefficients between the time-series of climate indices (AMM, AMO and 272 

NINO3) and seasonal hurricane number from 1970 to 2009. The information of the El 273 

Nino condition in previous season does not provide additional information for the 274 

upcoming seasonal hurricane activities. The AMM is highly correlated with seasonal 275 

hurricane number but it is not significant before June. In contrast, the AMO and 276 

hurricanes are significantly correlated as early as the previous winter and does not change 277 

as much as the AMM through the previous winter to summer. These relationships can be 278 

explained by the different timescales of climate variability as by Vimont and Kossin 279 

[2007]. Hurricane activity is related to the AMM on both interannual and decadal 280 

timescales, while it is related to the AMO only on a decadal timescale. Therefore, 281 

additional skill may be coming from considering the slowly varying climate signals as a 282 

predictor for predicting the seasonal hurricane activity. Note that the NINO 3 correlations 283 

are non-existent prior to the mid-spring in concert with the existence of a spring 284 

predictability barrier [Webster and Yang 1992; Webster 1995]. The combination of 285 

climate oscillation, such as AMM, AMO, NAO, or Pacific Decadal Oscillation (PDO) 286 

needs to be understood in order to interpret how these oscillations are linked to each other 287 

and influence the tropical cyclone activity. Such a study will provide additional 288 

information for further improvement of the forecast models that use as input the 289 

fluctuations of large-scale climate variability. 290 

291 
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