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ABSTRACT

The authors examine the predictability and prediction skill of the Madden–Julian oscillation (MJO) of two

ocean–atmosphere coupled forecast systems of ECMWF [Variable Resolution Ensemble Prediction System

(VarEPS)] and NCEP [Climate Forecast System, version 2 (CFSv2)]. The VarEPS hindcasts possess five

ensemble members for the period 1993–2009 and the CFSv2 hindcasts possess three ensemble members for

the period 2000–09. Predictability and prediction skill are estimated by the bivariate correlation coefficient

between the observed and predicted Wheeler–Hendon real-time multivariate MJO index (RMM). MJO

predictability is beyond 32 days lead time in both hindcasts, while the prediction skill is about 27 days in

VarEPS and 21 days in CFSv2 as measured by the bivariate correlation exceeding 0.5. Both predictability and

prediction skill of MJO are enhanced by averaging ensembles. Results show clearly that forecasts initialized

with (or targeting) strong MJOs possess greater prediction skill compared to those initialized with (or tar-

geting)weak or nonexistentMJOs. The predictability is insensitive to the initialMJOphase (or forecast target

phase), although the prediction skill varies with MJO phases.

A few common model issues are identified. In both hindcasts, the MJO propagation speed is slower and

the MJO amplitude is weaker than observed. Also, both ensemble forecast systems are underdispersive,

meaning that the growth rate of ensemble error is greater than the growth rate of the ensemble spread by

lead time.

1. Introduction

The Madden–Julian oscillation (MJO; Madden and

Julian 1971, 1972) is a dominant mode of subseasonal

variability in the tropical atmosphere and ocean that

interacts with a wide range of weather and climate

phenomena across the planet (Han et al. 2001; Zhang

2005; Lau and Waliser 2011, and many others). Because

of its impacts on the other components of the climate

system, the MJO has been considered as a major po-

tential source of the global climate predictability on

subseasonal time scales. Benefiting from the significant

improvement in the representation of the MJO in nu-

merical models that has been made in the past decades,

contemporary operational dynamical prediction systems

produce useful forecast of the MJO up to 20–25 days of

forecast lead time (Vitart and Molteni 2010; Vitart et al.

2010; Rashid et al. 2011; Zhang and van den Dool 2012;

Zhang et al. 2013; Vitart 2014; Wang et al. 2014). This is

encouraging, but the prediction skill is lower than the

theoretical estimates of the predictability, up to 25–40

days (Waliser et al. 2003; Reichler and Roads 2005; Kim

and Kang 2008). Therefore, in order to guide further

improvement of MJO prediction and to pinpoint par-

ticular weaknesses of dynamical prediction systems, it is

crucial to understand the MJO predictability and to

address the current status of the MJO prediction skill.

Previous studies have shown that the prediction skill

depends strongly on amplitude and phase of theMJO, as
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well as on the season inwhich theMJOevent is occurring.

The MJO prediction skill is distinctly better when the

MJO is strong at the beginning of the forecast, irre-

spective of the phase, compared to those that are weak

(Lin et al. 2008; Agudelo et al. 2009; Kang and Kim 2010;

Rashid et al. 2011; Zhang and van den Dool 2012; Wang

et al. 2014). Also, the MJO is more predictable in the

boreal winter than summer, due to a more well-defined

MJO with stronger amplitude and dominant eastward

propagation (Lin et al. 2008; Agudelo et al. 2009; Rashid

et al. 2011; Zhang and van den Dool 2012; Wang et al.

2014). Many operational dynamical predictions show

difficulty inMJO propagation, especially when theMJO

propagates over the Maritime Continent, known as the

MJO ‘‘Maritime Continent prediction barrier’’ problem

(Vitart et al. 2007; Lin et al. 2008; Seo et al. 2009; Vitart

and Molteni 2010; Fu et al. 2011; Weaver et al. 2011;

Zhang and van den Dool 2012; Wang et al. 2014). Also,

the slow MJO propagation speed and the fast decrease

of the predictedMJOamplitude limit the prediction skill

as well, although this is model dependent (Vitart et al.

2007; Agudelo et al. 2009; Vitart and Molteni 2010;

Matsueda and Endo 2011; Rashid et al. 2011;Wang et al.

2014). Another common weakness in operational en-

semble MJO prediction is the underdispersive ensemble

spread such that the ensemble spread inMJO prediction

does not encompass the forecast error of ensemblemean

(Rashid et al. 2011; Hudson et al. 2013).

Predictability and prediction skill of the MJO in dy-

namical models have been investigated individually in

depth with various methodologies. However, progress in

identifying and comparing MJO predictability, prediction

skill, and ensemble dispersion in various operational

models has been slow, perhaps in part because of the ex-

pense of integrating dynamical model simulation with

a large number of different initial conditions. It has thus

remained as an unexplored frontier. Operational forecast

centers are now incorporating improved physics, ensem-

ble generation methods, optimal initialization, and in-

creased resolution to their coupled prediction systems.

Therefore, a continuous systematic assessment of MJO

predictability and prediction skill, as well as understanding

the source and error of MJO prediction in current oper-

ational forecast system, is crucial to bridge the gap of skill

between the weather forecasts and seasonal prediction.

In this study, we assess the MJO predictability and

prediction skill in two current operational forecast sys-

tems that have been used for real-time subseasonal

forecasts: the European Centre for Medium-Range

Weather Forecasts (ECMWF) monthly forecasting sys-

tem (Vitart 2014) and National Centers for Environ-

mental Prediction (NCEP) Climate Forecasting System,

version 2 (CFSv2; Saha et al. 2014). Vitart (2014) and

Wang et al. (2014) examined MJO prediction in each

ECMWF and NCEP forecasting system, respectively.

Vitart (2014) found that the MJO prediction skill has

gradually improved in ECMWF monthly forecasting

system since 2002, with an average gain of about 1 day of

prediction skill per year until 2011. Also, the MJO am-

plitude has become more realistic although still weaker

than observed (Vitart 2014). The NCEP CFSv2 also

represents a substantial change from its previous version

in all aspects of the forecast system including model

components, the data assimilation system, and the en-

semble configuration. These changes have led to im-

proved MJO prediction. Wang et al. (2014) found that

the CFSv2 has useful MJO prediction skill out to 20

days although the MJO amplitude decreases faster and

the propagation speed is slower than observed.

In this study, we extend Wang et al. (2014) and Vitart

(2014) analyses to also explore the prediction skill. In

addition, we will compare the predictability and ensem-

ble dispersion of the two operational forecasting systems

systematically using large sets of ensemble reforecasts.

Comparing the state-of-the-art operational models will

lead to a better understanding of common model prob-

lems in MJO prediction. Section 2 introduces details of

the hindcasts, reanalysis data, and verification methods.

Section 3 examines the MJO predictability, prediction

skill, and characteristics of ensemble dispersion. Model

errors in MJO propagation and amplitude change will be

investigated in section 4. Predictability and prediction

skill for forecasts targeting MJO events are discussed in

section 5 and results are summarized in section 6.

2. Data and verification methodology

The NCEP CFSv2 and the ECMWF monthly fore-

casting system are fully coupled model systems. Accom-

panying both systems are large sets of reforecasts

(hindcasts) generated with the purpose of evaluating and

calibrating the model simulations. CFSv2 hindcasts con-

sist of fully coupled components of the ocean, atmo-

sphere, and land (Saha et al. 2014). The oceanic

component is the Geophysical Fluid Dynamics Labora-

tory (GFDL) Modular Ocean Model version 4 (MOM4)

and the atmospheric component is the NCEP Global

Forecast System (GFS) with a horizontal resolution of

T126 spectral truncation and 64 vertical levels extending

to 0.26hPa (Saha et al. 2014). We analyze the 45-day

hindcast runs commenced every 0600, 1200, and 1800UTC

(here we use three ensembles), 365 days a year over the

10-yr period from 2000 to 2009. Initial conditions come

from NCEP CFS Reanalysis (Saha et al. 2010).

ECMWF combined its monthly forecasting system

and the Variable Resolution Ensemble Prediction
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System into a single system (VarEPS; http://old.ecmwf.

int/products/changes/vareps-monthly/). The ECMWF

VarEPS is projected to 32-day horizons every Monday

and Thursday with the first 10 days at 30-km horizontal

resolution (vertical resolution of 62 levels extending to

5 hPa) for the atmospheric model and forced by a per-

sisted sea surface temperature (SST). Starting at day 11,

the atmospheric model horizontal resolution changes to

60 km and is coupled to the ocean. In addition, starting

on the same day and month as Thursday’s monthly real-

time forecast, a set of hindcasts including a 5-member

ensemble of 32-day integrations for each of the past 18

years is generated. Reforecasts have been initialized

from the ECMWF Interim Re-Analysis (ERA-Interim;

Dee et al. 2011). More details can be found in Vitart

(2014). For the present study, the VarEPS hindcasts for

years 2010 and 2011 are used. For year 2010, the first

instance selected is the hindcast associated with the real-

time forecast starting on 7 January 2010. The hindcast is

a five-member ensemble integrated with 18 different

starting dates from 1992 until 2009. Similarly, for year

2011, the first set selected is the real-time forecast

starting 6 January 2011. We select the 1993–2009 period

to ensure two sets of five-member ensembles each week,

resulting in a total of 52 weeks3 2 sets of hindcasts, thus

108 cases per year.

In total, we have 9180 (108 cases yr21 3 5 ensemble

members3 17yr) sets of 32-day integrations for VarEPS,

10 950 (365 cases yr21 3 3 ensemble members 3 10 yr)

sets of 45-day integrations for CFSv2, and 10 950

(365 cases yr213 30 yr, 1981–2010) days of observations.

Daily mean fields of outgoing longwave radiation

(OLR) and zonal winds at 200 (U200) and 850 hPa

(U850) are extracted from the hindcasts to obtain the

predicted MJO index defined below. The ERA-Interim

products and OLR from the National Oceanic and

Atmospheric Administration (NOAA) Advanced Very

High Resolution Radiometer (AVHRR; Liebmann and

Smith 1996) are used to create the observed MJO fields.

A daily climatology of observed variables is calculated

over the period from 1981 to 2010, from 2000 to 2009 for

CFSv2, and from 1993 to 2009 for VarEPS.

To extract the MJO component, the Wheeler and

Hendon (2004) real-time multivariate MJO index

(RMM) is calculated following Gottschalck et al. (2010).

RMM1 and RMM2 are the two leading modes of the

combined empirical orthogonal functions (EOFs) of

OLR, U200, and U850 averaged between 158N and 158S.
Figure 1 represents the spatial patterns of observedMJO

life cycle composite (OLR and U850) captured by the

observed two RMM indices without discriminating for

season or amplitude. The amplitude of the MJO is de-

fined as the square root of RMM12 plus RMM22. The

total observed and predicted MJO cases are separated

into ‘‘strong’’ and ‘‘weak/non’’ MJO cases based on the

observed MJO amplitude. The MJO is defined as strong

MJO for the amplitude larger than 1.5 (32.3% of total

observation cases) and weak/nonMJO for those less than

1.0 (32.4% of total observation cases) during the entire

observation period from 1981 to 2010. The predicted

RMM indices are obtained by projecting the ensemble

hindcast anomalies of zonal winds and OLR onto the

observed eigenvectors of combined EOF.

Theprediction skill is examinedby the bivariate anomaly

correlation coefficient (ACC) and bivariate root-mean-

square error (RMSE) developed by Rashid et al. (2011) as

ACC(t)5

�
N

t51

[a1(t)b1(t, t)1 a2(t)b2(t, t)]ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

t51

[a21(t)1 a22(t)]

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
N

t51

[b21(t, t)1b22(t, t)]

s ,

RMSE(t)5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
N

t51

[ja1(t)2b1(t, t)j21 ja2(t)2 b2(t, t)j2]
s

,

where a1(t) and a2(t) are the observed RMM1 and

RMM2 at time t, and b1(t, t) and b2(t, t) are the re-

spective forecasts for time t with a lead time of t days or

lag time of t days. Also, N is the number of predictions,

andACC(t) is equivalent to a spatial pattern correlation

between observation and forecast when they are re-

constructed from the two leading EOFs (Lin et al. 2008).

We use ACC(t) 5 0.5 as a threshold for skillful pre-

diction. Because of the large sets of hindcasts, the cor-

relation coefficient is significant at 99% level when it

exceeds about 0.1. To examine the propagation speed

error in predictions, we calculate the phase angle differ-

ence (error) between the observed and predicted RMMs

following Rashid et al. (2011) as

ERR(t)5
1

N
� tan21

�
a1(t)b2(t, t)2 a2(t)b1(t, t)

a1(t)b1(t, t)1 a2(t)b2(t, t)

�
.

Negative angle indicates the slower propagation in pre-

dictions compared to the observation.
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3. MJO predictability and prediction skill

a. Predictability and prediction skill

Predictability is the skill that is theoretically achiev-

able with a perfect model for a given set of equations,

whereas prediction skill is what is actually achievable in

a given prediction systems that contains model errors.

Therefore, the difference between the predictability and

the prediction skill will provide an estimate of howmuch

skill we can expect to increase by reducing the model

error and by improving initial conditions. In this section,

we compare the MJO predictability and prediction skill

in both hindcasts. As recent studies have clearly shown

that averaging ensembles can enhance the subseasonal

FIG. 1. MJO life cycle composite maps for OLR (Wm22, shading) and 850-hPa zonal wind

(m s21, contour interval is 0.5) anomalies calculated for each of the eight MJO phases.
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prediction skill (Vitart et al. 2007; Fu et al. 2013), the

effect of ensemble average on both predictability and

prediction skill is also investigated.

First, we examine the predictability using ensemble

mean and individual ensemble members. To estimate

predictability using ensemble mean, the bivariate corre-

lation coefficient ACC(t) between one ensemble mem-

ber (considered as ‘‘truth’’) and the ensemble mean

calculated from the rest of ensemble members is com-

puted. Predictability is assessed by the average of

ACC(t) for each of the ensemble subsamples. Figure 2a

shows the predictability of total MJOs, irrespective of the

initial MJO amplitude, as a function of forecast lead time

from 0 to 32 days for both VarEPS and CFSv2 hindcasts.

Similar to Rashid et al. (2011), predictability remains

around 0.6 at 32-day lead time in CFSv2 and even higher

in VarEPS. The dashed line in Fig. 2a represents the

predictability measured using individual ensemble. This

is calculated by the ACC(t) between one ensemble

member and the rest of ensemble members and then

averaged over the subsamples. The predictability of in-

dividual ensembles is lower than that of the ensemble

mean.

The prediction skill is far below the predictability

(Fig. 2b). The ensemble mean prediction skill (solid

line), defined as the forecast lead day when the ACC is

0.5, is about 27 days in VarEPS and 21 days in CFSv2,

similar to the skill explored in recent studies for each

system (Vitart 2014; Wang et al. 2014). The mean pre-

diction skill of ensemble members is 3–5 days lower than

that of the ensemble mean. The enhancement of skill in

ensemble mean over individual ensembles is greater in

VarEPS (;5 days) than in CFSv2 (;3 days), probably

due to the slightly larger number of ensemble members

or the smaller ensemble spread and error ratio. This issue

will be explored later in this section. It is obvious that the

MJOprediction skill has been gradually increased in each

forecasting system compared to its previous version and

the skill is now higher than that of statistical models

(Maharaj and Wheeler 2005; Seo et al. 2009; Kang and

Kim 2010; Rashid et al. 2011). However, the gap between

the predictability and prediction skill still remains about

10 days.

Previous studies have demonstrated that the pre-

diction skill depends strongly on the initial MJO am-

plitude (Lin et al. 2008; Agudelo et al. 2009; Kang and

Kim 2010; Rashid et al. 2011; Zhang and van den Dool

2012; Wang et al. 2014). Figure 3 compares the pre-

diction skill ACC(t) for forecasts initialized with strong

and weak/non MJO cases in two hindcasts. It clearly

shows that forecasts initialized with strong MJO (solid

line) possess greater prediction skill compared to those

initialized with weak/non MJO (dashed line) in both

models, probably due to the disorganized anomalies in

the initial condition in the weak/nonMJO. In CFSv2, the

prediction skill of the MJO is greater by about 4–5 days

FIG. 2. (a) Predictability (bivariate correlation coefficient) and

(b) prediction skill (bivariate correlation coefficient) for ensemble

mean (solid) and mean of individual ensemble members (dashed)

as a function of forecast lead day in VarEPS (red) and CFSv2

(blue).

FIG. 3. Prediction skill (bivariate correlation coefficient) for

initially strong (solid) and weak/non (dashed) MJOs as a function

of forecast lead day in VarEPS (red) and CFSv2 (blue).
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in forecast initialized in the strongMJO compared to the

weak/non MJO for the entire forecast lead time. The

VarEPS exhibits greater prediction skill when the MJO

is initially strong compared to the weak/non MJO until

day 23. The lower skill in the initially strong MJO after

day 23 compared to the weak/nonMJOmight be related

to the faster error growth in strong MJO cases (Fig. 4).

b. Ensemble spread and error

To estimate the uncertainties in ensemble predictions,

characteristics of the ensemble spread and error are

examined. While the error and the spread diagnostics

should not be viewed as a complete assessment of re-

liability, they are important in identifying at what lead

time the ensemble predictions are overdispersive or

underdispersive and hence unreliable. In a perfect en-

semble system, over a large sample of forecasts, the

ensemble spread would equal the error of the ensemble

mean (Weisheimer et al. 2011). However, current en-

semble predictions for the MJO are in general under-

dispersive, meaning that there is a lack of spread around

the ensemble mean (Rashid et al. 2011; Hudson et al.

2013).

Ensemble spread and error of the ensemble mean in

the VarEPS and CFSv2 are compared as a function of

forecast lead days for forecasts initialized with strong

(Fig. 4a) and weak/non MJO cases (Fig. 4b). Ensemble

spread is defined as a standard deviation of the ensemble

members about the ensemble mean, and error is defined

as RMSE of ensemble mean about the observation.

Results of both initially strong (Fig. 4a) and weak/non

MJO cases (Fig. 4b) are almost identical. In both initially

strong and weak/nonMJO cases, the error in the VarEPS

and CFSv2 is similar at the beginning, while it grows

faster in CFSv2 as lead time increase. The VarEPS shows

relatively smaller error and error growth rate by time

than the CFSv2. The error exceeds the ensemble spread

in both systems from the beginning, indicating that the

ensemble prediction systems are underdispersive. For

both initially strong andweak/nonMJO cases, the growth

rate of ensemble error by time is similar to the growth

rate of ensemble spread by time in the VarEPS, while the

growth rate of error is larger than the growth rate of

spread by time in the CFSv2.

Previously, relative to Fig. 3, we mentioned that the

skill of initially weak/non MJO exceeds the skill of ini-

tially strong MJO after 23 day in the VarEPS. The error

for the strong MJO becomes larger than that of weak/

non MJO after 23 day, while the spread is almost the

same. More specifically, the largest error for initially

strong MJO in the VarEPS results from forecasts initi-

ated during MJO phase 5 where the MJO convection is

located around the Maritime Continent. We will discuss

this issue later in section 3.

c. Source of predictability

Although previous studies have examined the MJO

prediction skill in depth, the source of the MJO pre-

dictability has yet to be fully addressed. By definition,

the RMMs consist of three component variables (OLR,

U200, and U850), making it possible to assess the con-

tribution of each variable to the total prediction skill.

The particular interest we have in this regard is whether

it is the convective anomalies (OLR) or the lower- and

upper-level large-scale circulation anomalies that pro-

vide the predictability of the MJO. We apply the mea-

sure of prediction skill (bivariate correlation coefficient

of ensemble mean) using RMM indices constructed with

OLR, U850, and U200, separately and in combination.

Predictions of the individual components of the RMM

index (i.e., RMM_OLR, RMM_U850, RMM_U200,

RMM_U8501U200) are compared against the observed

total RMM. For example, the RMM_OLR is obtained

by projecting only the predicted OLR anomaly onto the

FIG. 4. RMSE of ensemble mean (solid) and ensemble spread

(dashed) for (a) strong and (b) weak/non MJO as a function of

forecast lead day in VarEPS (red) and CFSv2 (blue).
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OLR component from the observed combined EOF ei-

genvector. By comparing predictions of RMM_OLR,

RMM_U850, RMM_U200, and RMM_U850 1 U200

with the observed total RMM, it might be possible to

determine the contributions of each variable to RMM

prediction skill and to find which variable tends to erode

the skill.

Figure 5 shows the ACC(t) between the observed

total RMM and predicted RMM comprised of each

variable separately, only for initially strong MJO cases.

In both hindcasts, it is obvious that the MJO prediction

skill relies on the prediction of large-scale circulation

fields (RMM_U850, RMM_U200, and RMM_U850 1
U200) compared to that of convection (RMM_OLR). In

both hindcasts, wind components contribute mostly to

the prediction skill from about 15-day lead, while OLR

erodes the skill in these forecast lead times, consistent

with previous studies (Waliser et al. 2003; Agudelo et al.

2009). For lead times less than 3 days, the VarEPS cor-

relations for OLR show a dip in the correlation. This

might be related to the OLR data used for verification

(NOAA AVHRR), but this issue needs to be examined

further. In CFSv2, beyond a 15-day lead time, the cor-

relation for the RMM_OLR starts to match or beat that

for the individual wind components. These results sug-

gest that OLR is not the major limitation for the pre-

dictions beyond 15 days.

It is natural to assume that the error emanating from

the convective regions affects the error in the zonal wind,

thus eroding, in turn, the prediction skill of the circulation.

However, the prediction skill of RMM_U850 1 U200

shows similar skill to the total RMM in both hindcasts,

indicating that wind fields are not particularly affected

by the large errors in OLR. It might be a result of a weak

coupling between convection and large-scale circula-

tions in both hindcasts. Therefore, a better representa-

tion of convection, circulation, and their interaction in

dynamical models is crucial to improveMJO prediction.

There may be a further factor: the contribution of each

variable to the total RMM. It needs to be acknowledged

that theOLR contributes less to the total RMM than the

wind fields in observation. The fractional contribution

of OLR to the variance of total RMMs is only 14.7%,

compared to 43.9% for U850 and 41.4% for U200

(Ventrice et al. 2013). Therefore, the lower prediction

skill in RMM_OLR can be expected.

d. Dependency of predictability and prediction
skill on MJO phases

To assess the dependency of MJO predictability and

prediction skill on the initial phase of the MJO, we

compare first the prediction skill of each of the eight

differentMJO phases, as defined in Fig. 1. The ensemble

mean prediction skill ACC(t) for forecasts initialized

with strongMJOs as a function of lead time and phase is

assessed. In the VarEPS (Fig. 6a), the prediction skill is

relatively high for the forecasts initialized with the MJO

in phases 4 and 7 while a sharp decrease appears in phase

5. The relatively low skill is found in phases 1, 2, 5, and 8

when the anomalous convective signal is located around

the Indian Ocean, the Maritime Continent, and the date

line in the initial conditions. The skill in NCEP CFSv2

(Fig. 6b) is relatively lower than in VarEPS and does not

vary as much between phases as does VarEPS. Skill

decreases relatively quickly in phase 2, consistent with

Wang et al. (2014). Knowing that theMJO is propagating

eastward at a speed of 5ms21, after about 15 days, the

convective anomaly from the Indian Ocean (phase 2) is

likely to be located near theMaritime Continent or about

to enter the western Pacific (phase 5). The low MJO

prediction skill for CFSv2 for cases initialized with the

MJO in initial phase 2, therefore, can be related to the

MaritimeContinent predictability barrier, which was also

apparent in the previous version (Seo andWang 2010; Fu

FIG. 5. Prediction skill for RMM indices constructed with OLR

(red), U850 (blue), and U200 (green) separately, and U850 and

U200 combined (brown), for initially strongMJOcases in (a)VarEPS

and (b) CFSv2.
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et al. 2011; Weaver et al. 2011; Zhang and van den Dool

2012;Wang et al. 2014). The relatively low prediction skill

for VarEPS for forecasts initialized with the MJO in

initial phase 2 is found as well, but is not as clear as that of

the CFSv2. Noting the inconsistency of the prediction

skill by phases between two hindcasts, it can be concluded

that the sensitivity of prediction skill to the initial MJO

phases is forecast system dependent.

While the prediction skill differs by initial MJO pha-

ses, predictability is not sensitive to the phase of the

initial MJO. Figure 7 shows the predictability (contour)

and the differences between predictability and predic-

tion skill for ensemble mean in bivariate correlation co-

efficients. In general, the difference increases as forecast

lead day increases. In VarEPS, the largest difference is

shown in phases 2 and 5. It is interesting that the pre-

diction skill reaches close to the predictability in phases

4 and 7. The predictability measured with the CFSv2

hindcasts is similar to the VarEPS before about 25 days.

However, the difference between the predictability and

prediction skill in the CFSv2 is large in all phases,

especially in phase 2. The difference between the pre-

dictability and prediction skill indicates that the overall

MJO prediction skill can be enhanced by focusing on

the error growth in specific MJO phases with detailed

analysis.

4. MJO propagation and amplitude

The errors in MJO propagation speed and amplitude

have a direct impact on prediction skill. Figure 8 shows

composite maps of OLR and U850 anomaly averaged in

the band 58S–58N for both observational fields and en-

semble mean hindcasts for initially strong MJOs. Initial

phases 2 and 5 are selected for comparison, based on

the prediction skill results (Figs. 6 and 7). Phase 2 is the

phase that both hindcasts show large differences be-

tween the predictability and prediction skill. For the

forecast cases initialized with the MJO in phase 2, both

hindcasts are able to represent the propagation to some

extent (Figs. 8a–c). However, the propagation speed is

FIG. 6. Prediction skill for forecasts initialized in the MJO phase

given on the left (y axis) for initially strong MJO cases in

(a) VarEPS and (b) CFSv2. Correlation coefficients are multiplied

by 100.

FIG. 7. Predictability (bivariate correlation coefficient; contours)

and differences between predictability and prediction skill (bi-

variate correlation coefficient; shading) as a function of initialMJO

phase and forecast lead day for (a) VarEPS and (b) CFSv2. The

values are multiplied by 100.
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slower than that observed and the amplitude of con-

vective anomaly is not as strong after about 10–15 days

in both hindcasts. The amplitude of zonal wind anomaly

is maintained, while it shows slower eastward propaga-

tion compared to the observed. The weaker signal of the

suppressed convection over the western Pacific in the

predicted anomalies might contribute to the weaker

eastward propagation of the convective anomaly over

the IndianOcean (Kim et al. 2014). Figures 8d–f show the

composite maps for the forecasts initialized with the

strongMJO in phase 5. This is the phase inwhichVarEPS

shows the largest difference between the predictability

FIG. 8. Longitude–time composites of the OLR (shading) and U850 (contour interval of 0.5m s21) anomaly av-

eraged over 58S–58N initiated at (a)–(c) MJO phase 2 and (d)–(f) phase 5 in observation, VarEPS, and CFSv2. The

purple line indicates the zero line for U850 anomaly.
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and prediction skill, while CFSv2 has relatively better

prediction skill (Fig. 7). The skill difference between the

two systems mainly results from the wind field. The

VarEPS does not predict the propagation signal, while

CFSv2 predicts the amplitude realistically with propaga-

tion of zonal wind field anomaly.

To condense the characteristics of propagation and

amplitude in difference phases, a phase–space diagram

for the predicted MJO is compared with the observed as

a function of lead time (Fig. 9). It represents a composite

of theRMM indices starting with an initially strongMJO

for lead time up to 25 days. Overall, the propagation

speed is slower and the amplitude is weaker than the

observation. To examine quantitatively the propagation

error in both hindcasts, we calculate the phase angle

error ERR(t) based on the composite phase diagram

(Fig. 9) averaged over a forecast lead time of 1–25 days

(Fig. 10). Negative values indicate slower propagation in

hindcasts relative to the observation. Consistent with

previous results (Fig. 9), the predicted MJO is indeed

slower than the observed. The average propagation speed

occurring in all phases is about 14.78 slower in VarEPS

and 16.18 slower in CFSv2 than the observed for the first

25 days. The phase angle error varies among the phases.

For VarEPS, the predicted propagation speed shows the

largest difference from the observation in phase 1, and for

CFSv2 in phase 8.

Next, we compare the change of the predicted MJO

amplitude by forecast lead day. Figure 11 shows the

change of MJO amplitude after an initially strong MJO.

Amplitude is defined here as the average amplitude of

individual ensemble members. Error bars represent the

ranges of one standard deviation of the MJO amplitude

in ensemble members. Predicted MJO amplitude is

weaker than the observed fields at the beginning of both

hindcasts. Amplitude decreases gradually in both ob-

servation and CFSv2 as lead day increases, saturating

at similar amplitude after 23 days. The amplitude in

VarEPS is much less than that observed. The amplitude

FIG. 9. RMM composite phase–space diagram for observation (black) and the ensemble mean of VarEPS (blue)

and CFSv2 (red) hindcasts initialized in strong MJO phases. The dots represent every 5 days from the forecast

starting date (square).

FIG. 10. The phase angle error averaged over 1–25-day forecast

lead time for forecasts initialized in each MJO phase in VarEPS

(red) and CFSv2 (blue). Numbers in parentheses indicate the av-

erage phase angle error over eight phases.
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reaches the threshold of MJO amplitude (defined as 1.5)

at 7 days in VarEPS, and at 10–11 days in the observa-

tion and CFSv2. Figure 12 shows the MJO amplitude

averaged for 1–25 days and sorted byMJO phases. It has

to bementioned that the amplitude in Fig. 12 (computed

by the mean of the ensemble members) is not the same

as that of Fig. 9 (computed by the ensemble mean), as

the amplitude computation is not linear. The averaged

amplitude over eight phases is 1.63 for observation, 1.49

for VarEPS, and 1.57 for CFSv2. The observed MJO

amplitude is relatively high when the strong MJO starts

at initial phases 2 and 3, and 6 and 7, where the MJO is

generally well organized. Phases 1 and 5 show the lowest

amplitude in the observation. Those phases are where

the convective signal is initially over the African conti-

nent or over the Maritime Continent (Fig. 1).

In both model sets, the MJO amplitude is smaller

compared to observations at phases 2 and 3. Although

theMJO convection is well organized as a strongMJOat

the beginning, it becomes rapidly weaker during its

eastward propagation, especially before the MJO enters

the Maritime Continent (Figs. 8 and 9). VarEPS consis-

tently predicts weaker amplitude over all phases, while

CFSv2 overestimates the amplitude in several phases,

especially phases 5, 6, and 7. These differences may be

related to the mean SST biases in each model. Kim et al.

(2012a,b) compared the mean SST biases in both sets of

seasonal hindcasts, and found that the CFSv2 possesses

a warm bias from the Maritime Continent to the western

Pacific. On the other hand, the ECMWF model shows

negative biases over the entire tropics, probably re-

stricting the development of well-organized convection

anomalies (Seo andWang 2010). These key factors that

modulate the MJO propagation and amplitude, and

thus in turn the prediction skill, need to be investigated

further with more detailed analysis.

5. Predictability and prediction skill for forecasts
targeting MJO events

Many previous studies have assessed MJO prediction

skill based on the initial amplitude and phases of the

MJO. That is, the prediction skill is based on the exis-

tence of an MJO. But this procedure is limited. It does

not provide information of how well the MJO would be

predictable prior to its occurrence. In this study, we as-

sess the predictability and prediction skill targeting

MJO events relative to forecast lag days. Figure 13

shows the ensemble mean ACC(t) for forecasts target-

ing strong andweak/nonMJOs. The 0 day represents the

day of the occurrence of strong or weak/non MJO and

negative numbers are the lag day t prior to the MJO

events. As one might expect, the prediction skill in-

creases as the time approaches toward zero. Both sys-

tems have clearly higher predictability and prediction

skill when predictions are targeting a strongMJO rather

than a weak/non MJO. In both hindcasts, the pre-

dictability is above 0.7 at 32 days ahead of the strong

MJO and about 21 days (correlation 0.5) ahead of weak/

non MJO (Fig. 13a). For prediction skill (Fig. 13b), the

strong MJO is predictable 30 days ahead of time in

CFSv2 and earlier than 32 days ahead in VarEPS. Both

systems have prediction skill about 10 days when fore-

casts are targeting a weak/non MJO.

Figure 14 shows the prediction skill of the ensemble

mean forecasts targeting strong MJOs in different MJO

phases. In VarEPS, skill does not show clear differences

between phases, while the CFSv2 shows sharp decrease

FIG. 11. The MJO amplitude for forecasts initialized with strong

MJO averaged over individual ensemble members in VarEPS

(red), CFSv2 (blue), and observation (black) as a function of

forecast lead day. Error bars represent the ranges of one standard

deviation of the ensemble members.

FIG. 12. MJO amplitude averaged over 25-day forecast lead time

in eight MJO phases in VarEPS (red) and CFSv2 (blue). Numbers

in parentheses indicate the average MJO amplitude over eight

phases.
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in skill at a specific phase 1 and 5. Skill decrease in the

forecasts targetingMJO in phase 1 and 5 is related to the

deficiency of the CFSv2 in predicting the enhanced (or

suppressed) convective signal associated with the MJO

over the Maritime Continent (Fig. 1) as mentioned

before. The Maritime Continent prediction barrier in

CFSv2 is found in Wang et al. (2014) as well. However,

this barrier is not clearly represented in VarEPS. An

operational model analyzed in Rashid et al. (2011) shows

no existence of the Maritime Continent barrier either.

Therefore, noting the discrepancy of skill in various op-

erational models, it can be concluded that the sensitivity

of prediction skill, including the Maritime Continent

barrier, strongly depends on the forecast system.

Figure 15 shows the predictability (contour) and the

differences between predictability and prediction skill

(shading) for forecasts targeting strong MJOs. The

predictability does not vary significantly among the

phases in both hindcasts. The difference between pre-

dictability and prediction skill is apparent when fore-

casts are targeting MJO in phase 5 in CFSv2, indicating

that prediction of theMJO over theMaritime Continent

has room for further improvement by reducing the error

in model physics and by improving initial conditions. In

CFSv2, the difference in phase 1 and 2 is obvious as well.

We have compared the predictability and prediction

skill for forecasts targeting the MJO. However, this

analysis of skill that targets MJO events does not provide

any information on how well a specific MJO event may

be predicted, since the prediction skill analysis aver-

ages together the results of many different events. We

have found that there are differences in the predictability

of strong MJOs compared to weak/non MJOs. But we

have not demonstrated any physical understanding of

whether the next MJO will be strong (and presumably

more predictable) or weak. Clearly, analysis focused on

specific MJO events needs to be examined in detail. In-

vestigation of the precursor signal of specific MJO (its

formation and propagation) may lead us to better un-

derstand the source of predictability as well as the limi-

tation of current models, and thus bring MJO prediction

closer to its theoretical limits. Forecasting of the initiation

of an MJO and its probable intensity remains a critical

issue as well.

FIG. 13. (a) Predictability and (b) prediction skill for ensemble

mean forecasts targeting strong (solid) and weak/non (dashed)

MJOs as a function of forecast lag day in VarEPS (red) and CFSv2

(blue).

FIG. 14. Prediction skill for forecasts targeting strong MJOs as

a function of MJO phase and forecast lag day in (a) VarEPS and

(b) CFSv2. Correlation coefficients are multiplied by 100.
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6. Summary and discussion

This study has analyzed the current status of the MJO

predictability and prediction skill by applying systematic

verification methods to two state-of-the-art operational

model hindcasts, the VarEPS and CFSv2. Predictability

and prediction skill of the MJO are estimated using the

bivariate anomaly correlation coefficient and the root-

mean-square error between the observed and predicted

RMM indices.

MJOpredictability remains above 32 days lead time in

both hindcasts, while the prediction skill is about 27 days

in VarEPS and 21 days in CFSv2. Results show that

forecasts initialized with strong MJOs possess greater

prediction skill compared to those initialized with weak/

non MJOs in both models, probably due to the disor-

ganized anomalies in the initial condition in weak/non

MJOs. By comparing ensemble spread and error in both

hindcasts, it is shown that error exceeds the ensemble

spread from the beginning of lead time, indicating that

both ensemble prediction systems are underdispersive.

The error grows faster than the spread by lead time in

CFSv2 while the ratio between error and spread is al-

most consistent across by forecast lead time in VarEPS.

To investigate the source of predictability, we compared

the prediction skill using RMM indices constructed with

different variables separately. Both wind components

contribute mostly to the prediction skill, while skill

erodes after 15 days. The results imply that a better

representation of convection, circulation, and interaction

between those in dynamical models is crucial for im-

provement of the MJO prediction.

Dependency of MJO prediction skill and predict-

ability on the initial MJO phase has been assessed as

well. Prediction skill in CFSv2 is relatively lower than

the VarEPS and skill does not vary as much between

phases as does the VarEPS. The differences of skill be-

tween two hindcasts indicate that the sensitivity of pre-

diction skill to the initial MJO phases depends strongly

on the forecast system. While the prediction skill varies

with initial MJO phases, predictability is not sensitive to

the phase of the MJO. The discrepancy between the

predictability and prediction skill in both hindcasts im-

plies that the MJO prediction skill can be enhanced by

reducing the model error and by improving initial con-

ditions, especially by focusing on specific MJO phases.

The error in propagation speed and amplitude of the

MJO directly impacts the prediction skill. By quantita-

tively examining the propagation speed error in both

hindcasts, we found that the propagation speed is about

14.78 slower in VarEPS and 16.18 slower in CFSv2 than

observed. The MJO amplitude decreases gradually and

results in averaged amplitude of 1.63 for observation, 1.49

for VarEPS, and 1.57 for CFSv2 over 25-day lead time.

We have also assessed the predictability and predic-

tion skill for forecasts targeting MJO events. Both

hindcasts possess higher predictability and prediction

skill when predictions are targeting strong MJOs than

weak/non MJOs. For the prediction skill, a strong MJO

is predictable 30 days ahead of time in CFSv2 and earlier

than 32 days in VarEPS. Both systems have prediction

skill of 10 days ahead of a weak/non MJO. It is seen

clearly that skill decreases when forecast is targeting

strongMJO in phase 5 in CFSv2, indicating theMaritime

Continent prediction barrier. Characteristics of pre-

cursor signals forMJOprediction need to be investigated

in depth to enhance the prediction skill closer to its

predictability.

We have compared the predictability and prediction

skill in the current operational model hindcasts fo-

cusing on total MJO cases. It needs to be emphasized

that the analysis in this study uses mixed cases of pri-

mary and successive MJOs as well as propagating and

nonpropagating MJOs. Given that primary and

FIG. 15. Predictability (contours) and differences between pre-

dictability and prediction skill (shading) for forecasts targeting

strong MJOs as a function of MJO phase and forecast lag day in

(a) VarEPS and (b) CFSv2. Correlation coefficients are multiplied

by 100.
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successiveMJOs have different characteristics as well as

distinct precursor signals (Matthews 2008), further

analysis needs to classify these two MJO types and ex-

amine their predictability and prediction skill sepa-

rately. Another important issue that needs to be

considered in the study of MJO predictability is the

classification of MJO by its propagation type. Recent

observational studies have shown that almost half of the

observed MJOs located in the Indian Ocean propagate

over the Maritime Continent, although half of those

weaken before they reach the Maritime Continent

(Lawrence and Webster 2002; Hirata et al. 2013; Kim

et al. 2014). Distinguishing between these MJO events,

propagating and nonpropagating, may provide insights

into the overall predictability of MJO. The predictability

for each type of MJO (primary and successive, propa-

gating and nonpropagating) should be addressed further.
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