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[1] This study assesses the CMIPS decadal hindcast/
forecast simulations of seven state-of-the-art ocean-
atmosphere coupled models. Each decadal prediction consists
of simulations over a 10 year period each of which are initial-
ized every five years from climate states of 1960/1961 to
2005/2006. Most of the models overestimate trends, whereby
the models predict less warming or even cooling in the earlier
decades compared to observations and too much warming
in recent decades. All models show high prediction skill for
surface temperature over the Indian, North Atlantic and west-
em Pacific Oceans where the externally forced component
and low-frequency climate variability is dominant. However,
low prediction skill is found over the equatorial and North
Pacific Ocean. The Atlantic Multidecadal Oscillation (AMO)
index is predicted in most of the models with significant
skill, while the Pacific Decadal Oscillation (PDO) index
shows relatively low predictive skill. The multi-model ensem-
ble has in general better-forecast quality than the single-model
systems for global mean surface temperature, AMO and PDO.
Citation: Kim, H.-M., P. J. Webster, and J. A. Curry (2012),
Evaluation of short-term climate change prediction in multi-model
CMIP5 decadal hindcasts, Geophys. Res. Lett., 39, L10701,
doi:10.1029/2012GL051644.

1. Introduction

[2] The prediction of decadal climate variability against a
background of global warming is one of the most important
and challenging tasks in climate science. Not only does
natural variability have a large-amplitude influence over
broad regions of the globe, it is an integral component of
climate variability that modulates low-frequency climate
phenomena as well as extreme climate events such as trop-
ical cyclone activity. On decadal timescales, some aspects
of internal climate variability may be predictable [Collins
and Allen, 2002; Smith et al., 2007; Keenlyside et al.,
2008; Meehl et al., 2009, 2010; Pohlmann et al., 2009;
Mochizuki et al., 2012]. However, the actual prediction skill
of natural climate variability on decadal timescales using
various current climate models has received little attention
[van Oldenborgh et al., 2012].

[3] The Coupled Model Intercomparison Project Phase 5
(CMIP5) has devised an innovative experimental design to
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assess the predictability and prediction skill on decadal time
scales of state-of-the-art climate models, in support of the
Intergovernmental Panel on Climate Change (IPCC) 5™
Assessment Report [Taylor et al., 2012]. The decadal pre-
dictability and prediction skill of individual models have
been analyzed separately for multi-year prediction horizons
over different time periods and regions [Pohlmann et al.,
2009; Fyfe et al., 2011; Chikamoto et al., 2012; Mochizuki
et al., 2012]. However, the CMIP5 decadal predictions
from different models have not been evaluated and com-
pared using the same evaluation matrix. The choice of one
model over the other, or the use of sets of models in a multi-
model ensemble (MME), requires information that compares
the predictions of individual models. Here, we compare the
ability of currently available CMIP5 decadal hindcasts to
simulate the mean climate and decadal climate variability
from individual coupled models and a multi-model ensem-
ble. We focus on the surface temperature and two dominant
internal climate modes: the Atlantic Multidecadal Oscilla-
tion (AMO) and Pacific Decadal Oscillation (PDO). This
study addresses how well the CMIP5 multi-model decadal
hindcasts simulate the spatio-temporal climate variability.

2. Data and Models

[4] This study compares the CMIP5 decadal hindcasts and
forecasts conducted by seven modeling centers. Each
decadal prediction includes at least 3 and as many as 10
ensemble members generated by slightly different initial
conditions. The data consists of simulations over 10 year
period that are initialized every five years during the period
1960/1961 to 2005/2006 [Taylor et al., 2012]. A brief
summary of each model’s experimental configuration is pre-
sented in Table S1 (see Text S1 in the auxiliary material)."
The annual mean refers to the average from January to
December for each year.

[5] Surface temperature data from the ERA40 [Uppala
et al., 2005] before 1979 and from the ERA Interim
[Berrisford et al., 2009] after 1979 are used to evaluate
the predictions. The Extended Reconstructed Sea Surface
Temperature Version 3 (ERSST.v3b) [Smith et al., 2008] is
used to define the PDO and AMO indices. All data from
model hindcasts and observations are interpolated to hori-
zontal resolution as 2.8125° longitude and latitude. For the
observations, the long-term mean is removed by subtracting
climatological means for the entire period from 1960 to
2010. The model forecast anomaly is calculated as Y';; =
Y — Y., where Y is the ensemble-average prediction, Y’ is
the anomaly of the raw forecast with respect to the forecast

'Auxiliary materials are available in the HTML. doi:10.1029/
2012GL051644.
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Figure 1. Time series of globally averaged annual-mean surface temperature [K] for reanalysis (black) and the ensemble-
mean of the CMIP5 decadal hindcasts and forecasts (red and blue) for (a) HadCM3, (b) CanCM4, (c) CNRM, (d) MIROC4h,
(e) MIROCS, (f) MRI and (g) CFSv2. Gray shades represent the ranges of one standard deviation of the ensembles in

each hindcasts.

average Y, j is the starting year (n = 1, 2, ..., 10) and T is
n

the forecast lead year. Y is calculated as Y, = 1" Y}, in the
J=1

period only when observational data is available. The

equally weighted average from total 52 ensemble members

of seven hindcast experiments provides the values for

the MME.

3. Prediction Skill Assessment for CMIP5
Decadal Hindcasts

3.1.

[6] The model prediction skill is examined by comparing
the annual mean surface temperature from the observation
and hindcasts of each model. Figure 1 shows the evolution
of the annual global surface temperature (Y;;) from the
reanalysis from 1960 to 2010 and ensemble mean of each
model 10 year hindcast/forecast from 1961 to 2015 (initial-
ized every 5 years). Most of the models simulate lower
global mean surface temperature than the reanalysis during
the entire period, except MIROC4h (Figure 1d), MIROC5
(Figure le) and CFSv2 (Figure 1g). Several models,
including CanCM4 (Figure 1b) and CNRM (Figure Ic),
which are initialized close to the observed state (full field
initialization), drift towards the model climate. Models that
are initialized with anomaly assimilation (anomaly initiali-
zation) also show climate drift during predictions (MIR-
OC4h, MIROCS and MRI: Figures 1d-1f, respectively).
Most of the models appear to overestimate the 1960-2010

Global Surface Temperature

trend in their hindcasts. Removing the average along the
actual time (Y},) leads to a skewed outcome, whereby the
MME (Figure S1 in Text S1) and each models (not shown)
predict less warming or even cooling compared to the
reanalysis in the earlier decades, and too much warming in
recent decades. Figure 2 shows the observed and predicted
trend (slope in a linear regression) in Y}, as a function of
forecast lead time (7) after applying a four-year average to
filter out the high frequency variability. The observed trend
is calculated in the same manner of the trend in hindcasts.
The systematic overestimation in the trend throughout the
integration period is obvious in all hindcasts except CFSv2.

[7] To examine the prediction skill of the individual
models and also the MME, the average for the lead times of
1-year, 2-5 year and 6-9 year mean surface temperature
anomaly field (Y};) is compared with reanalysis (Figure 3
and Figure S2 in Text S1). We measure the prediction skill
in terms of the anomaly correlation coefficients:

>[4, - ¥.][0, - 0]
CORR(7) = —== ,

S0 TT S0 -0

where the O’s are the observed field. The correlation coef-
ficients are calculated over the ensemble mean for the hind-
casts of each models. The results are almost the same if the
observed anomaly is calculated based on the climatology O..
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Figure 1. (continued)

[8] All models show high skill (greater than the 95%
confidence level) in forecasting surface temperature anoma-
lies over the Indian, North Atlantic and the western Pacific
Oceans up to 6-9 years (Figure 3 and Figure S2 in Text S1).
However, the equatorial Pacific and North Pacific Ocean
regions show less prediction skill after 2—5 years (Figure 3).
For 6-9 years, the predictive skill does not change much
compared to 2—5 years (Figure S2 in Text S1). The relatively
long prediction skill appears over the region where the
externally forced component and low-frequency climate
variability is dominant [Keenlyside et al., 2008; Meehl et al.,
2009; Pohlmann et al., 2009; Chikamoto et al., 2012,
Mochizuki et al., 2012; Oldenborgh et al., 2012]. High pre-
diction skill also occurs in the tropical Atlantic SST which
is an important factor in climate variability in that region
and beyond [Keenlyside et al., 2008]. Comparing the glob-
ally averaged skill for each model’s hindcasts shows the
highest skill occurring for the MME over the entire period
(not shown). The relatively low skill in MIROC4h and
CFSv2 is possibly due to the smaller number of ensemble
members (i.e. 3 and 4 members, respectively) compared
to other models (i.e. 6-10 members) as larger number of

ensemble members generally results in representing a higher
skill in the ensemble mean.

3.2. Decadal Climate Variability

[9] To examine the prediction skill of natural internal
modes of climate variability, the simulation of AMO and
PDO indices is compared with observations. The AMO and
PDO are the dominant decadal oscillations over the North
Atlantic Ocean [Schlesinger and Ramankutty 1994; Enfield
et al., 2001] and North Pacific Ocean [Mantua et al.,
1997], respectively, and are the most predictable compo-
nents of internal climate variability [e.g., Keenlyside et al.,
2008; Mochizuki et al., 2010]. The AMO index is defined
as the area averaged annual mean sea surface temperature
(SST) anomaly averaged over the North Atlantic from 80°W
to 20°W and from 0° to 70°N for both the simulations and
observation. The simulated PDO index is defined as the
normalized time series based upon projections of predicted
annual mean SST anomaly in the North Pacific Ocean
poleward of 20°N, onto the leading EOF spatial pattern
from the observed annual mean SST anomaly. Both in the
observations and model hindcasts, the SST anomalies are
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Figure 2. Trend [K/10yr] for the global mean annual tem-
perature anomaly predicted by MME and ensemble-mean of
each CMIPS5 decadal hindcasts as a function of lead time.
Black dashed line represents the trend in the observation.
Gray shades represent the ranges of one standard deviation
of the ensemble-mean in each hindcasts.
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detrended before calculating these indices to remove the
externally-forced variation [Oldenborgh et al., 2012].
A four-year running average is applied to both indices to
filter out higher interannual frequencies. Figure S3 in Text
S1 shows the variation of the AMO and PDO indices from
observations and the MME hindcast. Both indices show
strong decadal variability. The gray shades in Figure S3
represent the ranges of one standard deviation of the
ensemble mean in each hindcast.

[10] The predictive skill for the AMO and PDO index is
measured by correlation coefficient and root-mean-square
error (RMSE) between the simulations and observation.
Figure 4 shows the correlation coefficient as a function of
lead-time for the MME and the ensemble mean of individual
models. For representing confidence limits of significance,
the correlations and RMSE of the persistence prediction are
included (Figure 4 and Figure S4 in Text S1). Horizontal
lines in each figure represent the confidence level (Figure 4)
and observed standard deviation (Figure S4 in Text S1),
respectively. For the AMO prediction, the correlation coef-
ficients and RMSE of almost all models represent significant

PREDICTION SKILL

Year02—-05

—0.9-0.8-0.7-0.6-0.5-0.4-0.3-0.20.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 3. The spatial distribution of temporal correlation coefficients for the annual mean surface temperature anomaly
between reanalysis and decadal hindcasts at forecast years 1 and 2—5 years average. The values show the correlation coeffi-
cients from ensemble-mean for each of models for (a) MME (b) HadCM3, (c) CanCM4, (d) CNRM, (e) MIROC4h, (f)
MIROCS, (g) MRI and (h) CFSv2. Solid black (gray) line represents statistical significance of the correlation coefficients

at 99% (95%) confidence level.
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Figure 3. (continued)

skills (Figure 4a and Figure S4a in Text S1). After 1-4 years,
the MME, HadCM3, CNRM and MIROC4h show greater
skill than the persistence prediction. After 3—6 years, most
of the models have greater and significant skill than the
persistence prediction (high correlation than persistence
and smaller RMSE than the persistence and observed
amplitude). The MME represents more skillful results than
most of the individual model predictions over the entire
prediction period.

[11] The prediction skill in PDO index is lower than
AMO, in agreement with recent studies [Oldenborgh et al.,
2012]. The correlation coefficient of the PDO index shows
predictive skill over 90% confidence level in MME and
CanCM4 for 14 and 2-5 years. CanCM4 remains being
above 90% during 3—6 years and MIROCS is far above 95%
for 3—6 years. The MME shows a decrease in skill for lead
times beyond 3—-6 years (Figure 4b). The correlation coeffi-
cients of almost all models represent insignificant skills
for the PDO index over the entire period. The correla-
tion coefficient is less than the persistence prediction and
the errors of all models are larger than the observed PDO

amplitude. The MME shows more skillful results than most
of the individual model predictions.

4. Conclusion

[12] We have assessed the CMIPS decadal hindcast/
forecast simulation performance of seven state-of-the-art
ocean-atmosphere coupled models. Most of the models
produce cooler than observed global mean temperature
during the entire period and overestimate the observed trend
in their hindcasts. All models show high prediction skill for
surface temperature up to 69 years over the Indian Ocean,
the North Atlantic and the western Pacific Oceans, while
showing lower predictive skill over the equatorial Pacific
and North Pacific Ocean. The AMO index is relatively well
predicted in all models for the entire prediction period with
a significant skill, while the predictive skill for the PDO
index is relatively low for the entire period.

[13] Although the MME does not outperform all of the
constituent models for every forecast skill metric, it has in
general better forecast quality than the single models for
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Figure 4. Correlation coefficients for the (a) AMO and (b) PDO index predicted by MME, persistence (PERS) and ensemble-
mean of each CMIP5 decadal hindcasts as a function of lead time (years). Solid (dashed) horizontal line represents statistical
significance of the correlation coefficients at 95% (90%) confidence level.

global mean temperature, AMO and PDO. This study partly
supports the utility of the multi-model ensemble approach in
overcoming the systematic model biases from individual
models and in enhancing decadal predictability. It should be
noted that not all modeling centers have thus far released
their decadal predictions for CMIP5. Additional intercom-
parison will be conducted when the other CMIP5 simula-
tions are made available.
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