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ABSTRACT

Linear shallow water equations are employed to study the effects of basic zonal flows on equatorially trapped
waves. Analytical solutions are obtained for constant basic zonal flows. It is shown that changes in the wave
structures due to the non-Doppler effect of the basic zonal flow are considerable for the Rossby wave, moderate
for the westward propagating mixed Rossby-gravity wave, but negligible for the other equatorial waves. The
Rossby wave and the westward propagating mixed Rossby-gravity wave possess greater eigenfrequencies and
are less trapped in westerlies than in easterlies. The dependence of the Rossby wave structure upon the basic

-zonal flow is interpreted in terms of potential vorticity conservation, In basic zonal flows with meridional shears,

the eigenfrequencies are found to be larger in equatorial easterlies than in equatorial westerlies for the westward
propagating waves but smaller for the eastward propagating waves. While the meridional structures of the
eastward propagating waves show little sensitivity to the basic zonal flow, the Rossby wave is less trapped in
equatorial westerlies but the westward propagating inertia-gravity wave is less trapped in equatorial easterlies.
It is suggested, therefore, that the equatorial transient Rossby waves interact with midlatitudes more readily at
the longitudes associated with tropical westerlies. Furthermore, at these same longitudes, it is possible that
extratropical forcing may project onto the equatorial modes and produce equatorially trapped responses if the
forcing lies within their turning latitudes, which may extend to beyond 40° latitude at these locations. The
conclusion underlines the upper troposphere of the tropical eastern Pacific Ocean and possibly the tropical
Atlantic Ocean as critical regions of latitudinal interaction in both directions over a wide range of time scales.
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1. Introduction

During the last two decades, the theory of equatorial
waves has become the cornerstone of equatorial dy-
namics in the atmosphere. Matsuno (1966) derived
the complete set of linear wave solutions of the shallow
water equations on an equatorial 8-plané and noted
the trapped properties of these waves. Longuet-Higgins
(1968) pointed out that Matsuno’s solutions are
asymptotic approximations of general normal modes
on a sphere as the parameter e = 4Q2a2/gh approaches
infinity. Here Q is the angular velocity of the earth’s
rotation, a the earth’s mean radius, g the gravitational
acceleration, and 4 the equivalent depth of a shallow
fluid. The equatorially trapped waves have been applied
for various purposes, especially in explaining some

fundamental features of tropical climate. The phe--

nomena that have been explained by using the equa-
torial wave theory include the Walker circulation
(Webster 1972, 1973; Gill 1980; Lim and Chang 1983),
the atmospheric teleconnection patterns (Lim and
Chang 1983; Lau and Lim 1984), the low-frequency
oscillation initially observed by Madden and Julian

Corresponding author address: Dr. Chidong Zhang, Department

of Meteorology, Pennsylvania State University, 503 Walker Building,
University Park, PA 16802.

© 1989 American Meteorological Society

(1971) (e.g., Chao 1987; Lau and Peng 1987; Wang
and Rui 1989), and the El Nifio—Southern Oscillation
(e.g., Lau 1981; Hirst 1986).

In the applications of the equatorial wave theories
noted above, the impacts of the atmospheric basic state
on the structures of equatorial waves need to be well
understood and have been the subject of 2 number of
studies. Using a linear shallow water equation model,
Lim and Chang (1983 ) demonstrated that steady state
Rossby wave responses to an equatorial forcing are
much less trapped in a constant basic westerly flow
than in an easterly flow. Lau and Lim (1984 ) also found
that the equatorially forced Rossby wave is able to “ra-
diate” toward higher latitudes only within a westerly
wind regime. Boyd (1978a,b) obtained asymptotic
equatorial wave solutions in a2 mean zonal flow with
meridional shear. He showed that, while the shear ef-
fects are negligible for the structures of the Kelvin and
Rossby waves, they are considerable for the mixed
Rossby-gravity wave. Wilson and Mak (1984) found
that a meridionally sheared zonal flow can give rise to
equatorial trapping. Lau and Lim (1984 ) suggested that
a basic westerly shear zonal flow would focus energy
associated with the equatorial Rossby mode from the
tropics into the extratropics more readily than the case
with zero or easterly shear. The temporal behavior of
the equatorial Rossby wave in a sheared flow has been
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studied by Boyd and Christidis (1987). The structures
and vertical propagating properties of the equatorial
waves in a mean flow with vertical shear have also
received considerable attention (e.g., Lindzen 1971,
1972).

Recently, Webster and Chang (1988 ) demonstrated
that in the linear regime, energy associated with the
transient equatorial Rossby wave excited in a zonally
nonuniform basic flow may propagate along the equa-
tor and accumulate in a region to the east of tropical
westerly maximum. From the accumulation region,
where the characteristics of the basic state and the wave
conspire to provide a convergence of wave action flux,
the signal appears to emanate toward higher latitudes.
Their analysis has now been extended to the nonlinear
regime where essentially the same features are evident
(Chang and Webster 1989). A central feature of Web-
ster and Chang’s wave energy accumulation-emana-
tion theory is that irrespective of where the waves are
generated along the equator, emanation of energy to
higher latitudes occurs at the same longitudes, es-
pecially where the longitudinal stretching deformation
of the basic zonal flow is negative. The similarity of
the response may explain results such as those from
Geisler et al. (1985), where it was found that the middle
latitude atmospheric response seems to be relatively
insensitive to the location of forcing along the equator
and appears to be geographically phase-locked to the
longitudes associated with the equatorial westerlies. The
mechanism for the energy emanation, however, is un-
known. Indeed, if it is a true emanation at all, why
would wave energy not emanate directly towards higher
latitude away from the wave source within the tropical
easterlies as suggested initially by Hoskins and Karoly
(1981)? Based on existing theory, there does not appear
to be any reason to expect an independence of the ex-
tratropical response to the location of the equatorial

forcing. Another problem with the wave-train ema-

nation interpretation is that the initial waves generated
in the easterlies were highly equatorially trapped and,
by definition, possessed collectively zero poleward
group velocities. If the waves in the westerlies were
truly emanating, they would have nonzero poleward
group velocities. The production of this new wave form
in the accumulation region would require a wave-wave
interaction. Obviously, such nonlinear processes were
absent from Webster and Chang’s initial linear analysis.
The wave energy emanation mechanism, therefore,
must reside within linear theory.

In addition to theories concerning equatorial waves,
there has been considerable evidence of their existence
from observations. The waves that have been observed
include Kelvin waves in the stratosphere (e.g., Wallace
and Kousky 1968) and troposphere (e.g., Zanvil and
Yanai 1980; Yanai and Lu 1983; Lu 1987), westward
propagating mixed Rossby-gravity waves in the strato-
sphere (e.g., Yanai and Maruyama 1966; Wallace
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1973) and troposphere (e.g., Zanvil and Yanai 1980;
Yanai and Lu 1983; Lu 1987; Liebmann and Hendon
1989), and Rossby waves in the troposphere (e.g., Reed
and Recker 1971; Zanvil and Yanai 1980; Yanai and
Lu 1983). A common feature is that the characteristics
of the observed equatorial waves appear to vary in time
and space. For example, in Yanai and Lu (1983), sig-
nals of the mixed Rossby-gravity waves are strong in
the 200 mb wind field data in the summer of 1967,
but are absent from the data in the summer of 1972.
Furthermore, the periods and equivalent depths of the
observed Rossby waves from the two summers are dif-
ferent. Liecbmann and Hendon (1989) recently ob-
served some zonal variations in the characteristics of
the westward propagating mixed Rossby-gravity waves
in the lower troposphere. They found larger frequencies
and smaller zonal scales over the Indian and western
Pacific oceans than over the other equatorial longitudes.
The reasons for the observed temporal and zonal var-
iabilities associated with the wave characteristics are
not clear. They are probably due to the variations of
wave excitation mechanisms or the dependence of the
waves themselves upon the atmospheric basic state that
varies temporally and zonally, or a combination of both
factors.

In order to tackle the questions arising from the ob-
servations and theoretical studies in particular, and to
gain a better understanding of tropical atmospheric
dynamics in general, it is necessary to investigate fur-
ther the effects of the varying basic states upon the
equatorially trapped waves in the atmosphere.

The purpose of this study is to examine the effects
of basic state zonal flows on the equatorially trapped
waves. In sections 2 and 3, equatorial wave solutions
in constant basic zonal flows are obtained from a set
of linear shallow water equations on an equatorial (-
plane. It will be shown that, while the Kelvin wave,
inertia—gravity wave, and eastward propagating mixed
Rossby-gravity wave are not particularly sensitive to
the basic zonal flows, the frequencies and structures of
the Rossby wave and westward propagating mixed
Rossby—gravity wave are subject to considerable mod-
ulation by non-Doppler effects of the basic zonal flows.
In a constant basic westerly flow, the eigenfrequencies
of the Rossby wave and westward propagating mixed
Rossby-gravity wave are larger and the meridional
structures of these waves less trapped to the equator
than in a constant basic easterly flow. In section 4, the
non-Doppler effect of the basic zonal flow on the
Rossby wave trapping is interpreted in terms of poten-
tial vorticity conservation. Solutions of equatorial
waves in sheared basic flows will be obtained in section
5. It will be shown that larger frequencies are found in
the basic zonal flow of equatorial easterlies with strong
shear than equatorial westerlies with weak shear for
the westward propagating waves. The opposite results
are obtained for the eastward propagating waves. In
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basic zonal flows with equatorial easterlies, the Rossby
wave shows more trapped structure while the westward
inertia—gravity wave exhibits less trapped structures
than in basic zonal flows with equatorial westerlies.
The meridional structures of the eastward propagating
waves seem to be insensitive to the basic zonal flow,
whether shear exists or not. In section 6, the results are
sumrnarized and conclusions drawn regarding the im-
basic zonal flow. In particular, it is emphasized that
the regions of upper tropospheric westerlies over the
equatorial West Pacific and Atlantic oceans may act
as two-way corridors of interactions between the tropics
and extratropics.

2. Equations

The equatorially trapped waves have been described
with the shallow water equations on an equatorial 3-
plane in some detail by Matsuno (1966). Here we con-
sider a more general system with a shear basic state
zonal flow, U(y). The total geopotential field of such
a system can be expressed as

P(x, p,1) =P+ B(y) + &(x, y, 1),

where ¢(x, y, t) is the geopotential perturbation and
$,(y) the geopotential surface slope which is in geo-
strophic balance with the basic zonal flow U(y), such
that

(2.1)

(2.2)

In (2.1) &, is the constant mean geopotential field and
is related with the equivalent depth 4 as ®, = gh. In
this study, we consider a system where &, > ®.(y).

The linear, inviscid, shallow water equations for the
system on an equatorial $-plane are

du du dU A

” + U + dy Byv + el 0, (2.3a)
ov o ¢

=+ U— +Bu+— =0, (2

a " ax Brut s (2.3)
d¢ ¢ u 9

—Z4+U—=- +ghl— + .

3 + Uax ByUv gh( ay) 0, (2.3¢)

where u and v are the zonal and meridional velocity
components and ¢ the geopotential field. Here (2.3)
can be made nondimensional by choosing time and
length scales of

T=p2(gh) 1%, L =8""%(gh)"/*. (2.4)
The equations for the nondimensional variables are

O IECAR

EY ax  dy ax (2.52)
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v ov ¢
—+ U— +yu + — 2.5b
ot v ax i ay =0, (2.5b)
¢ d¢ du v
—+U—- +—+—= .
a Uax yUv ax T ay 0. (2.5¢)

Bennett and Young (1971) employed the same set to
study meridional wave propagation. The equivalent
depth £ used in this study for nondimensionalization
is 300 m, which is close to one of the calculated values
from the observations of the equatorially trapped
Rossby wave (Yanai and Lu 1983). Notice that the
terms in (2.5) with the basic zonal flow can be distin-
guished as those of a Doppler effect (i.e., Ud/dx) and
a non-Doppler effect (i.e., vdU/dy and —yUv).

We seek the normal mode solutions of (2.5), i.e.,
u u'(y) ,
v | =|v(y) | explilkx —wt)], (2.6)
¢ ¢'(¥)

where k is the zonal wavenumber, and w the frequency;

both being assumed constant. Substituting (2.6) into

(2.5) and omitting the primes for simplicity, we obtain
the equations for the meridional eigenfunctions as

du
—idu — yv +ik¢ + — v =0,

& (2.7a)

—iov + yu + i(é =0, (2.7b)
dy
in . dv

—io¢ + tku+——yUv =0, (2.7¢)
dy

where @ is the Doppler-shifted frequency, which will
be determined as the eigenvalue in sections 3 and 5.

Here & is related to w by the Doppler relation
& =w-—kU. (2.8)

A single equation for v(y) can be derived from (2.7)
by eliminating # and ¢. This is

d dv( 2k dU ok
- + 52— k2 — =
a7 +dy( “Kdy Uy) ”[“’ 5

k 2k?  (dU\?
—y2 = 2 _ U4+ ——[—
y &Uy U 7 Z(dy)

_ 2k dU deU_—I_c T+ K dU]

-V ay T od eol-kdy
=0. (2.9)
The boundary condition for (2.9)is -
v(y)—=>0 as y— *owo, (2.10)

which is an approximation of the homogeneous
boundary condition on a sphere (i.e., v = 0 at the poles)
and is necessary for v(y) on an equatorial 8-plane to
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be a valid approximation to a solution on a sphere
(Lindzen 1967).

Letting
2 k du
PY) = 0 & - @ua
k
q(y)='&2—k2—5—y2—§Uy2—U
W (A0} A4 kY
dy Wy@ b dy?
24k _dU
—-7 FYpae Ud—, (2.11b)
(2.9) can be written as
d* dv
—_— + R = R
a2 p(») e +4q(y)v=0 (2.12)
By applying the variable transformation
'y
v(y) = V() exp[—f §p(r)dr], (2.13)
(2.12) becomes
a2V 1dp 1 ,\_
2 + V(q 3 4p )—0, (2.14)
and with (2.11), can be written as
a*v 2k i,k 12,2
d2+V{ k_g_[1+::"U+ZUj|y

1 3k*  (dU\? % d*U
—;U~- 2\ 0] T 2y 32
dy w(@® — k*) dy

1 kU 22 dU
+ 2 - _— =
[2 (:)(&)2 _ k2) &2 ~ kz]y dy} 0. (2.15)
A generic form of (2.15) is
32V
el + T (y)V =0, (2.16)

where I'?(y), which represents the quantity in the
braces of (2.15), is the squared refractive index, and
is commonly used in different forms to study propa-
gating and trapping properties of the solution V()
(e.g., Bennett and Young 1972; Lau and Lim 1984;
Wilson and Mak 1984). In general, the solution V()
w1ll be wavelike where I'2(y) > 0 and evanescent where

I'2(y) <0. Equatorial trapping of V' ( y), then, requires
that

r’>0, when y<y,
[ y=x (2.17)

I'2<0, when y>y,

where y, is a turning latitude, at which I'2 = 0 and the
solution changes from being wavelike to evanescent.
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For constant U, a simpler form can be derived from
(2.15) for which analytical solutions are available as
derived in section 3. For a basic zonal flow with shear,
an eigenvalue problem can be defined from (2.7) and
solutions are obtained as eigenvectors in section 5.

3. Meridional solutions in constant zonal flows

When the basic state zonal flow is constant, (2.15)
reduces to
daxv
dy?
where the terms 4 U? and 1 U have been neglected by

assuming U < 1 (i.e., U < (gh)'/? in dimensional
form). Noticing that in the squared refractive index

r2=&2—k2—§—(1+§u)y2
w w

w

+ V[a,z-kz—é-(l +—2U)y2]=0, (3.1)

(3.2)

all the parameters are constant, we may write (3.1) in
a generic form as

d2 2.2
dy +V(a—>b’y)=0 (3.3a)
where
2 2 k
a=o*—k*——, (3.3b)
w
and
k 1/2
b=(1+7U) . (3.3¢)
w

With constaht a and b, and the boundary condition
(2.10), (3.3a) has the standard solution

V(y) = Hi(b"2y) exp(= 3 by%),  (3.4)

where 7 is the meridional mode number and H,(§) is
the Hermite polynomial of the nth order. The disper-
sion relation associated with (3.4) is

a=(2n+ 1)b. (3.5)
From (3.3a) and (3.5), the turning latitude is given

by
-4 2n + 1\!/2
yl - b .

The solution for (2.9) in a constant basic zonal flow
is then obtained from (2.13) and (3.4) as

(3.6)

v(p) = Ha(b'2y) exp(—- % by? +§ Uyz). (3.7)

Substituting (3.3b, ¢) into (3.5)-(3.7), we have the
solution, the associated dispersion relation and the
turning latitude as
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Co(y) = [(1 + = U) y
1 k I |
X hid el 2
ol (o8]t} on
1/2
—kz—-lf—(2n+ 1)(1 +lf-U) , (3.9)
w w
k ~l/2 1/2
= t{(Zn + l)(l +5 U) ] , (3.10)
respectively. v
We define a meridional structure function as
1(y\,, (¥
F, = “ Al AN E .
» exp[ Z(R) ]H (R) (3.11a)

where

k —~1/4
R=(1+7U) (3.11b)
w
is the modified equatorial Rossby radius of deformation
in a constant basic state zonal flow. Note that, from
(3.10) and (3.11b), the turning latitude and the Rossby
radius of deformation are related to each other as

yio=%(2n+ 1)'/?R. (3.11c)

Consequently, the two quantities have the same depen-
dence on the constant basic-zonal flow!

If the small term 1Uy? in (3.8) is neglected, the
complete solutions to the reduced set (2.5), with a
constant U, can be expressed as

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 46, No. 24

u [ F i1 () + F o (V)1 (IW)
vy = F.(y)
¢ [61F (¥} + &Kt () (W)
X expli(kx — wt)] (3.12a)
where
u = — % [(& + kU)R + k/R], (3.12b)
u = —n[(& + KU)R — k/R],  (3.12¢)
¢1= =3 [(GU+ k)R +&/R], (3.12d)
¢y = — n[(6U + k)R~ &/R], (3.12¢)
and
W=0a2— k2. (3.126)

In (3.12), the eigenfrequency @ must be determined
from the dispersion relation (3.9) for each wave. As
demonstrated by Matsuno (1966) and others, the var-
ious equatorial waves need to be addressed separately
for they bear different dispersion relations and possess
different structures. Figure 1 shows the dispersion re-
lations for these families of waves in zero basic state.
We now consider, in turn, the eigenfrequencies and
wave structures of each waveform in constant basic
zonal flows of 0.18, 0, and —0.18; or, in dimensional
form, 10,0, and —10 m s™'.

a. Rossby wave

From (3.9), the approximate dispersion relatxon for
the Rossby wave is _

‘Eigenfrequency

- 1R033by

. L - L

2
Zonal W

0 2 4 6 8
avenumber

FiG. 1. Dispersion relations of the equatorial waves. Labels refer to the wave’s families.
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FIG. 2. Dispersion relations of the n = 1 Rossby wave with
U = 10 (dotted line), O (solid line), and —10 (dashed line) m s~!.

—k? —§= (2n + 1)(1 +§ U)m,
w w
from which the eigenfrequency is obtained as
k2k?— (2n+ 1)2U ~ (2n + 1)A'/2
T2 k*—(2n + 1)? ’
(3.13a)

» =

where
A=(2n+ 1)2U? — 4k2U + 4. (3.13b)

The dependence of Rossby wave eigenfrequency
upon the basic zonal flow is shown in Fig. 2 where &
from (3.13) is plotted as a function of k for the three
constant basic zonal flows with » = 1. For a given k
and n, a larger & is found in the westerlies than in the
easterlies. This dependence of & on U is more substan-

]
-

]
L

Group Velocity
1
9

; “l_20
0 9 8 7 6 5 4 3 2 4

Zonal Wavenumber

FIG. 3. Group velocity of the n = 1 Rossby wave as a function of
zonal wavenumber with U = 10 (dotted line), 0 (solid line), and
—10 (dashed line) m s~'. The left ordinate gives nondimensional
value and the right ordinate dimensional value in m s,
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tial for larger k£. Consequently, the Doppler-shifted
phase speed of the Rossby wave, which is westward, is
larger in the basic westerlies than in the easterlies.

The group velocity of the Rossby wave can be de-
rived from (3.13) as

1 1
2k = (2n + 1)?
—(2n+ DAY? + 4k* — 4(2n + 1)k*UA V2

22— (2n+ 1)2U — (2n+ 1)A'?
k*—(2n+ 1)2

Figure 3 plots the group velocities of the # = 1 Rossby
wave in the three constant zonal flows. For planetary-
scale Rossby waves, the westward group velocity has a
larger amplitude in the westerly basic zonal flow and
a smaller one in the easterly flow. For smaller scales,
while the group velocities are eastward, the effect of
the sign of the constant zonal flow is much weaker.

Another significant impact of a constant zonal flow
is that the Rossby radius of deformation of the free
Rossby wave is modified, as suggested by (3.11b)..For
the n = 1 mode, Fig. 4 shows the Rossby radius, R,
increases with kK when U > 0, remains constant when
U = 0, but slightly decreases when U < 0. For a given
mode, R is always greater in the westerlies than in the
easterlies, especially for the smaller scales.

The dependence of the Rossby radius of deformation
on U has a considerable impact on the meridional
structures of the Rossby wave. To illustrate this char-
acteristic, the components and complete structure of
the mernidional structure function of n = 1, k = 5
(3.11a) are plotted in Fig. 5. The exponential com-
ponent of the meridional structure function decays with
latitude much faster in the easterly flow than in the
westerly flow (Fig. 5a). In Fig. 5b, the Hermite poly-
nomial extends more poleward when U > 0 and con-

Cg=— [2k2—(2n+1)2U

— 4k* ] (3.14)

3 . ' ' ' ! v T T T 48
n =1 h=300m ROSSBY

w .
=
- 2 ls2
-]
x §
I 10 ,‘
e 3
- L 6
e« | e e e
° -10
[-

[ L ) . ) | ) . ‘ °

-10 9 8 7 6 -5 4 3 2 -1
Zonal Wavenumber

FIG. 4. Rossby radius of deformation, R, of the n = 1 Rossby
wave as a function of zonal wavenumber with U = 10 (dotted line),
0 (solid line), and —10 (dashed line) m s~!. The left ordinate gives
the nondimensional value and the right ordinate the dimensional
value in 103 km.
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ROSSBY

@ \\.‘.:‘"'-_ n=1k =5

\"h = 300m

\ ‘.

exponential

100

()
<1 80

4...0"’. 1 60
' |40

120

10

90—20

i s

0 .30 0 90
Latitude (degree)

FIG. 5. Meridional distribution of (a) the exponential factor, (b)
the Hermite polynomials, and (c) the meridional structure function
of the n = 1, k = 5 Rossby wave with U = 10 (dotted line), 0 (solid
line), and —10 (dashed line) ms™'.

tracts more equatorward when U < 0 compared to the
case with U = 0. That is, the Hermite polynomials are
displaced either poleward or equatorward depending
on the sign of the basic zonal flow. As a result, the
complete meridional structure function (Fig. 5c) in
westerlies occupies a more extended wave region ad-
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FIG. 6. Meridional distributions of the k = 5 Rossby wave solutions
with U = 10 (dotted line), 0 (solid line), and —10 (dashed line) m
s, Panels show (a) u, n = 1;(byv,n=1;(c) ¢, n=1;(d) u, n
=2;(e)v,n=2;and (f) ¢, n = 2.

jacent to the equator and decays to zero slower toward
the poles than in easterlies. |

Given the dependencies on constant basic zonal flow
of the Rossby radius of deformation, and, especially,
the meridional structure function, it is not hard to
identify the gross impacts of a constant basic zonal
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FI1G. 6. (Continued)

flow on equatorial trapping of the Rossby wave. That
is, the equatorial Rossby wave tends to be more trapped
in easterlies than in westerlies, and this is particularly
so for waves with smaller horizontal scales. The me-
ridional distributions of u#, v, and ¢ of kK = 5 Rossby
waves calculated from (3.12) with n = 1 and n = 2 are
plotted in Fig. 6 for the three constant basic zonal flows.
The dominant modifications on the meridional struc-
tures by the constant basic zonal flow are clearly shown.
For a given mode, the basic patterns of these fields are
similar regardless of U, but the oscillatory regions ex-
tend further poleward from the equator in westerly flow
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and are more trapped toward the equator in easterly
flow. This impact of U on the meridional distributions
increases with n. For example, the latitudinal difference
between the geopotential maxima in the westerly and
easterly flows is 10° for » = 1, but increases to about
15° for n = 2 (Fig. 6f).

It should be pointed out that the dependence of the
structures of the eigensolutions upon U is due to the
non-Doppler effect of the basic zonal flow. If only the
Doppler effect terms of U are retained in the system
[i.e., if term —yUv is neglected from (2.5¢)], the char-
acteristics of the corresponding Rossby wave solutions
in a constant U will be exactly the same as if U = 0
except for w being replaced by @. Thus, the meridional
structures of the solutions, of course, will not be
changed by the basic zonal flow. In section 4, we will
see that the non-Doppler term modifies the equatorial
Rossby wave structure by altering the ambient potential
vorticity gradient. The Doppler terms, on the other
hand, merely advect the gradient. It also needs to be
emphasized that the non-Doppler effect discussed
above does not depend upon particular values of non-
dimensionalization parameters. For example, Fig. 7
shows that the Rossby radius of deformation varies
similarly with constant basic zonal flow over a wide
range of value of the equivalent depth.

b. Inertia-gravity wave

From (3.9), the approximated dispersion relation
for the inertia-gravity wave is

k\/2
&)2-k2=(1+7U) . (3.15)
o

k . " . .
Generally, — U < 1 since o is relatively large for iner-
w

tia—-gravity waves. Consequently, the frequency of the

r T T }

RossbyRadius

IS T SR S |

1000
h (m)

‘ 1‘500 ‘20000
Fi1G. 7. Rossby radius of deformation, R, of the n = 1, k = 5
Rossby wave as a function of the equivalent depth with U = 10

(dotted line), O (solid line), and —10 (dashed line) m s~'. The or-
dinate gives dimensional value in 10% m.
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FIG. 8. Dispersion relations of the inertia~gravity waves with U
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inertia~gravity wave is only negligibly affected by the
constant basic zonal flow, as shown in Fig. 8, where
@ is plotted as a function of k with n = 1 through 4 for
the three basic zonal flows. For the same reason, the
Rossby radius of deformation of the inertia—gravity
wave and, therefore, its meridional structure given by
(3.11b) and (3.12) will not be significantly modified
by the constant basic zonal flow.

¢. Mixed Rossby-gravity wave

From (3.9), the dispersion relationship for the mixed
Rossby-gravity wave is ’

2k k A\
QP—kr—-<-=(1+=% , (3.16)
w . w
with the full solutions given by
T ~r - e T T T T 1
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F1G. 9. Dispersion relations of the westward propagating mixed
Rossby-gravity wave with U = 10 (dotted line), 0 (solid line), and
~10 (dashed line) m s~
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-90

u wFi(¥)/(iW)
v| = Fo(y)
¢ o F(y)/(iW)

where F,(y), u,, ¢, and W are defined by (3.11) and
(3.12). For the eastward propagating mixed Rossby—
gravity wave, the effect of the constant basic zonal flow

expli(kx — wt)], (3.17)
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is negligible because either k is small or @ is large so
that

k
—-—U<1
w

in (3.16). For the westward propagating counterpart,
the effect of the constant basic flow remains negligible
for small k but becomes larger with increasing k. Figure
9 shows the eigenfrequency of the westward propagat-
ing mixed Rossby-gravity wave as a function of & for
the three constant basic zonal flows. Like the Rossby
‘'wave, larger eigenfrequencies are found in the westerly
flow than in the easterly flow. The meridional structures
of u, v, and ¢ for the westward propagating mixed
Rossby-gravity wave are plotted in Fig. 10 for k = 8.
Less trapping is found in the westerly flow than in the
easterly flow. The similarity to the Rossby wave is not
surprising as the westward propagating mixed Rossby—
gravity wave asymptotes to a Rossby wave for large &,
as seen in Fig. 1 for zero basic state.

d. Kelvin wave

Since the meridional velocity of the Kelvin wave is
negligibly small, the term — yUv in (2.5¢) vanishes and
the non-Doppler effects of the constant basic zonal flow
are virtually absent.

4. Potential vorticity interpretations of the equatorial
Rossby wave trapping

The physics of the dependence of equatorial Rossby
waves upon the basic zonal flow must be addressed in
light of the generation mechanism of the Rossby wave.
An appropriate physical framework in which to discuss
this is the concept of conservation of potential vorticity
(PV). As an air parcel moves and experiences changes
in ambient PV, perturbation relative vorticity is in-
duced or altered in accordance with the conservation
of the total PV. The induced relative vorticity can be
viewed as the restoring force that drives the Rossby
.wave oscillation (Pedlosky 1987, pp. 102-105). In this
section, by adopting the prototype conceptual model
of an air parcel undergoing a latitudinal displacement
relative to the constraint of PV conservation, we shall
examine how the form of basic zonal flow affects the
restoring force and therefore modifies equatorial trap-
ping of Rossby waves. In other words, we look for the
conditions that provide a latitudinal variation in the
restoring force defined above. Clearly, an equatorially
trapped mode must be driven by a restoring force that
decreases with latitude. In an environment that causes
the restoring force to decrease rapidly with latitude, a
wave will be more trapped and its waveform con-
strained to lie closer to the equator. A wave that is

"weakly trapped will have a restoring force decreasing
slowly towards the poles and its waveform, forced by
the wider distribution of the restoring force, will extend
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much further poleward. Thus, the degree of the de-
crease of the restoring forced with latitude signifies the
degree of the trapping.

The linear nondimensional PV equation on an
equatorial $-plane derived from (2.5) is

dall
— =0 4.1
a s (4.1)
where
I ={(1— %)= ¢({+y)+({+y)(1— %)
(4.2a)
is the total PV. In (4.2a),
dv  du
=——— 4.2b
§ a3y (4.2b)
is the perturbation relative vorticity, and
' = du
= - — 4.2
§ & (4.2c)

is the relative vorticity of the basic state. With constant
U, (4.2a) is simplified as

I = (1 - %)~ gy +y(1 —&). (4.2d)

Without loosing generality, we assume that initially
the perturbation PV of a parcel located at y = yj is
zero. That is, the initial PV is

Iy = yo(1 — @y). (4.2¢)

Then, using (4.1), (4.2d), and (4.2¢), the conservation
of PV (4.1) states that

§(1 = &) — ¢y + y(1 — &) = yo(1 — B0). (4.3)

In order to better illustrate how the PV conservation
concept can be applied to explain the effects of basic
state zonal flow on equatorial Rossby wave trapping,
we first consider the situation where the basic zonal
flow is zero. For this case, (4.3) becomes

$— oy +y=y,
or
{— oy = —A4y,

where Ay = y — ), represents an infinitesimal merid-
ional displacement experienced by an air parcel. Equa-
tion (4.4) states that, under the constraint of PV con-
servation, for the same displacement Ay, the magni-
tudes of the induced perturbation relative vorticity, {,
and geopotential disturbance, ¢, depend upon latitude.
The variation of { with y can be obtained if we make
an “equatorial quasi-geostrophic approximation.” That
is, we assume that the geopotential perturbation can
be related to streamfunction ¢ by

¢ =y,

(4.4)

(4.5)
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FIG. 11. Meridional variations of magnitude of normalized per-
turbation relative vorticity with U = 10 (dotted line), 0 (solid line),
and —10 (dashed line) m s~'., The horizontal line shows the induced
perturbation relative vorticity in a nondivergent system.

and the relative vorticity to the streamfunction by

14
§=V23(/~—P, (4.6)
where L is the horizontal scale of the Rossby wave.
With (4.5) and (4.6), the geopotential perturbation ¢

can be expressed in terms of relative vorticity as

¢ ~ —yL?¢. 4.7)

The perturbation relative vorticity, then, can be ex-
pressed as

Ay

{w—m (4.8)

Equation (4.8) indicates that for the same displacement
Ay, the magnitude of the induced perturbation relative
vorticity { reduces with increasing y from a maximum
value at the equator, and therefore, so does the restoring
force of the Rossby wave oscillation. The latitudinal
variation of ¢ for this case is shown in Fig. 11 as the
solid line labeled as 0. The decrease of the restoring
force with y explains the trapping mechanism of the
equatorial Rossby waves.

In a nondivergent system (i.e., # = o0), the con-
tribution of the geopotential field to the total PV is
zero and (4.4) reduces to

§=—A4y, (4.9)

which shows that {is independent of y. In other words,
without divergence, the restoring force of Rossby os-
cillation does not decrease with y so that no equatorial
trapping can occur (e.g., see Lim and Chang 1983;
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Webster and Chang 1988), and an equatorial 8-plane
is identical to any S-plane on the globe. The PV con-
servation argument developed here explains physically
the critical role divergence plays in the equatorial trap-
ping of Rossby waves.

When a nonzero constant basic state zonal flow is
present, an expression of { as a function of y can also
be derived from (4.3), (4.5), and (4.6) with the geo-
strophic approximation (i.e., ®; = —3y*U). The re-
storing force then is

3
1+ - Uy?
2 O

§=-—Ay (4.10)

1+ L%y? + Uy?*’
Equation (4.10) suggests that while the magnitude of
the induced relative vorticity is still inevitably reduced
with y in a divergent system, it becomes even more
significant in easterly flow (U < 0) but less so in west-
erly flow (U > 0). We may then write from (4.10) that

[$(U<0)] <[S(U=0)| <[$(U>0)

at any latitude for an equivalent latitudinal displace-
ment. Figure 11 plots the normalized magnitude of {
from (4.10) against y. The decrease of the amplitude
of ¢ with latitude is much faster for U'= —10 m s~}
with the e-folding latitude of 15° than for U = 10 m

! where the e-folding latitude is about 25°. The dif-
ferent decay rates of the restoring force for the different
basic zonal flows that the Rossby wave should be more
trapped in easterlies than in westerlies, collaborating
the results of section 3.

The physical impact of a basic zonal flow on the
Rossby wave, which has been described by Pedlosky
(1987, pp 108-111) for extratropical Rossby waves,
also applies for equatorial Rossby waves. In the pres-
ence of a basic zonal flow, the geostrophically balanced
geopotential field modifies the latitudinal gradient of
the total ambient PV, which is equivalent to an en-
hanced or reduced S-effect. In a geostrophic westerly
regime, the geopotential field tends to decrease with
latitude and the B-effect is enhanced. This change in
ambient PV leads to a slower decrease with latitude of
the restoring force of Rossby wave oscillation and a
reduced trapping of the equatorial Rossby waves. On
the other hand, in an easterly flow, the effective S-effect
is reduced and the change in ambient PV leads to a
more rapid decrease of {, which provides a stronger
trapping of Rossby waves.

5. Meridional solutions in sheared zonal flows

When the basic zonal wind varies latitudinally, the
other non-Doppler term vd U/ dy enters the set (2.5).
Equation (2.7) then assumes the form

(Q ~ iwl)V + iBV = 0, (5.12)
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where
0 —y ik
0o 4
Q=1 Y & | (5.1b)
d
ik — O
ik &
u
V=1{v], (5.1¢)
¢
.dU
kU _ldy 0
B={ o ku o |» (51d)
0 iyU kU

be the mth eigenvector of Q, and &,, the corresponding
eigenvalue, such that V), and &,, satisfy

(Q = i0p) V= 0. (5.3)
In other words, V,,(y) is an equatorial normal mode
and &, its frequency. It is known that V,, (m = 1, 2,
+ - +, 00 ) can be applied as a basis function for a normal

mode expansion (Matsuno 1966). Here we express V/
in terms of V,, as

V(y)= 2 amVm(y),

m=1

(5.4)

where a,, is the expansion coefficient to be determined.
By substituting (5.4) into (5.3) with truncation M and

using the orthogonality of V,,, the following equation
is obtained '

(X —wl)A =0, (5.5)
where
0
A= % |,
an

and X is an M X M matrix consisting elements X’
given by .

o 1
Xnm' = @pOmm+ + ‘-]\_f;‘if

+0

(BV ) Vidy

= WpmOmm’ +

1 + 00
N, 2 f [kU(ﬁm’ﬁm
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. ~ o~ av . .
+ 0y 0y + ¢m'¢m) + "5}- U 'Um

= YUbpbmldy. (5.6)
In (5.6) V% is the conjugate of V,, and N,,” is

+00
N = [ (@ + 0,7+ By,

—a0

(5.7)

The infinitive integration in (5.6) and (5.7) can be
computed by using the Gaussian-Hermite quadrature
formula. Given U(y), X is known, and (5.5) becomes
a standard eigenvalue problem that can be solved with
A as the eigenvector and w as the corresponding eigen-
value of X. This method has been described by Boyd
(1978a) and employed by Kasahara (1980) to study
the effect of zonal flow on the spherical normal modes.

The two basic zonal flows with meridional shear used
to calculate X in (5.6) are plotted in Fig. 12. The first
(dotted line), referred to as EW, is characterized by an
equatorial westerly flow of 10 m s~! and midlatitude
westerlies of 30 m s™!. This is a typical meridional
distribution of the 200 mb zonal wind over the eastern
Pacific Ocean in winter which is shown in Fig. 13. The
second flow (dashed line), referred to as EE, resembles
the meridional distribution of the 200 mb zonal wind
over the western Pacific Ocean in winter (Fig. 13),

.with an equatorial easterly flow of —10 m s ™! and mid-

latitude westerlies of 40 m s~!.

Using the sheared zonal flows EW and EE, the ei-
genfrequencies and meridional structures of the equa-
torial waves are calculated from (5.5) with the trun-
cation including 10 meridional modes (i.e., M = 33).
With meridional shear at the equator in a basic zonal
flow, there is the possibility of inertial instability (e.g.,
Dunkerton 1981, 1983; Stevens 1983). Also, the modal
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F1G. 13. Observed 200 mb zonal wind in the boreal winter based on a 17-year NMC dataset.
Stippled areas denote easterlies. (Contour interval of 5 m s™').

_ critical latitude is another issue associated with sheared
basic zonal flow that has been addressed by many stud-
ies (e.g., Dickinson 1970; Killworth and Mclntyre
1985). In our study, all the waves plotted and discussed
are inertially stable and no critical latitude exists for
those transient waves.

a. Rossby wave

The Rossby wave eigenfrequency is modulated by
shear zonal flows in a manner very different from the
modification by constant zonal flows discussed in sec-
tion 3a. Figure 14 shows that the eigenfrequency is
always larger in the basic zonal flow EE (dashed line);
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FIG. 14. Dispersion relations of the » = 1 Rossby wave in sheared
basic zonal flow; EE (dashed line), EW (dotted line), and in zero
basic zonal flow (solid line).

which contains equatorial easterlies, than in EW (dot-
ted line) which contains equatorial westerlies. For ref-
erence, the eigenfrequency for U = 0 is also plotted

(solid line).

In section 3a, it was seen that the Rossby wave ex-
hibits a larger meridional scale in a constant basic
westerly flow than in a constant easterly flow. This
characteristic seems to be retained even in basic zonal
flows with shears. The meridional structures of u, v,
and ¢ for the n = 1, k = 5 Rossby wave are plotted in
Fig. 15. Clearly, the Rossby wave, especially its zonal
wind component, is less equatorially trapped in EW
than in EE (Fig. 15a). It seems that the meridional
structures of the Rossby wave are more controlled by
the non-Doppler effects of the basic zonal flows in the
equatorial region than those associated with the basic
zonal flows of higher latitudes. However, a comparison
of the U = 0 curve with the EE and EW curves in Fig.
15 indicates that the effect of shear makes the wave.
generally less trapped about the equator. Perhaps this
is consistent with the potential vorticity argument dis-
cussed in section 4. Both the basic zonal flows EE and
EW enhance the latitudinal geopotential gradient and,
therefore, the B-effect between the equator and 35°,
the latitude of the westerly jets. The latitudinal decrease
of the restoring force of the Rossby wave oscillation in
each of the shear flows is then smaller than the case
with no shear, and the trapping is reduced.

b. Inertia~-gravity wave

In contrast to the situation with constant basic zonal
flows, the eigenfrequencies of the inertia—gravity wave
are considerably affected by the sheared basic zonal
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FIG. 15. Meridional distributions of the n = 1, k = 5 Rossby wave
solutions in sheared basic zonal flow; EE (dashed line), EW (dotted
line), and in zero basic zonal flow (solid line). Panels show (a) u,
(b)vand (¢) ¢.

flows. Figure 16 shows that the inertia-gravity wave
eigenfrequency in the sheared zonal flows is increased
for the eastward propagating waves but decreased for
the westward propagating waves relative to the case of
zero zonal flow. The eigenfrequency, however, is larger
in EW where the shear is weaker than in EE where the
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shear is stronger for the eastward propagating waves
but smaller for the westward propagating waves.

The meridional structures of the eastward propa-
gating inertia-gravity wave, shown in Fig. 17, indicate,
however, little differences in the two shear flows with
only slightly less trapping occurring in EW than in EE.
Figure 18 shows the meridional structure of the west-
ward propagating inertia—gravity wave. Here, the wave
appears to be quite sensitive to the sheared flow. Gen-
erally, as with the Rossby wave, the trapping is much
weaker as a result of shear. However, the wave is even
less trapped in EE where shear is stronger than in EW!
The implication of this effect on the atmospheric lat-
itudinal interactions is discussed in section 6.

¢. Mixed Rossby-gravity wave

Figures 19-21 show the effects of shear on mixed
Rossby-gravity waves in terms of the eigenfrequency
and meridional structures. The effects appear to be
similar to those on the inertia—gravity waves in that,
for the eastward propagating waves, the eigenfrequen-
cies (Fig. 19) are increased in comparison to the zero
basic zonal flow and larger for EW than for EE. The
opposite relationship appears for the westward prop-
agating waves. In other words, the meridional structures
of the eastward propagating waves seem to be less af-
fected by the shear than those of the westward propa-
gating waves (Figs. 20, 21), at least for # and ¢. In the
sheared zonal flows, the westward propagating wave is
much less equatorially trapped in comparison to the
zero zonal flow. However, the difference in the merid-
ional structure is not very large between the cases of
EE and EW, except for ¢ of the westward propagating
wave, which shows obviously less trapped structure in
EE than in EW.
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FIG. 16. Dispersion relation of the n = 1 inertia—gravity wave in
sheared basic zonal flow; EE (dashed line), EW (dotted line), and
in zero basic zonal flow (solid line).
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d. Kelvin wave

Figures 22 and 23 show the eigenfrequency and the
meridional structures of # and ¢ for the k = 5 Kelvin
wave, respectively. The eigenfrequency is seen clearly
to be larger in EW but smaller in EE than in zero zonal
flow (Fig. 22). As in a constant basic zonal flow, the
meridional structures of the Kelvin wave are basically
unaffected by shear (Fig. 23).

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 46, No. 24

6. Summary and conclusions

This study was motivated by some uncertain issues
regarding the theory of equatorially trapped waves.
These uncertainties were posed by recent observations
and theoretical developments. The linear shallow water
equations were employed as the framework within
which the effects the basic zonal flow on the equatorial
waves were addressed. Solutions of the equatorial free
normal modes were obtained for constant and sheared
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propagating inertia-gravity wave solutions in sheared basic zonal flow;
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basic zonal flows. Most of the results pertain to the A
=300 m, »n = 1 and k = 5 waves. However, similar
results were also obtained for other parameter values.

The system and the methods employed in this study
have their own limitations, of course. The shallow water
system restricts addressing the importance of vertical
structure of the atmospheric basic state on equatorial
waves. The effects of basic meridional flow, which have
been shown to be nonnegligible in some circumstances
(Schneider and Watterson 1984; Rosenlof et al. 1986),
were not considered in this study. Furthermore, it is
unknown how the results would be modified by non-
linearity when the amplitudes of the waves become too
large for the linear theory to hold. Chang and Webster
(1989) suggested, however, that the characteristics of
the wave dependence on the forms of the basic state
may transcend linearity to nonlinearity. Also, the as-
sumption that the eigenfrequencies and the zonal
wavenumbers are constant in sheared basic zonal flows
is debatable. Nevertheless, the simple approach adopted
here and the major results obtained provide some new
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insights into the fundamental physics of the equatorial
waves. We summarize the main results as follows:

a. General conclusions

(i) The non-Doppler effects of a constant basic zonal
flow are significant to the Rossby wave, moderate to
the westward propagating mixed Rossby—-gravity wave,
but negligible to the other equatorial waves. For the
Rossby wave and the westward propagating mixed
Rossby-gravity wave, the eigenfrequencies were found
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FIG. 20. Meridional distributions of the k = 5 eastward propagating
mixed Rossby-gravity wave solutions in sheared basic zonal flow;
EE (dashed line), EW (dotted line), and in zero basic zonal fiow
(solid line). Panels show (a) u, (b) vand (¢) ¢.
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to be larger in a constant basic westerly flow and smaller
in a constant easterly flow. The meridional structures
of these waves were found to be less equatorially
trapped in a basic westerly flow than in an easterly
flow.

(i1) The non-Doppler effect of a constant basic zonal

flow on the Rossby wave trapping was interpreted in.

terms of potential vorticity conservation. Basically, in
a divergent system with potential vorticity conserva-
tion, the induced perturbation relative vorticity (i.e.,
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restoring force of the Rossby wave oscillation ) reduces
with latitude at different rates depending upon the sign
of the basic zonal flow and produces different degrees
of equatorial trapping. Westerly zonal winds enhance
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FIG. 23. Meridional distributions of the k = 5 Kelvin wave solutions
in sheared basic zonal flow; EE (dashed line), EW (dotted line), and
in zero basic zonal flow (solid line). Panels show (a) # and (b) ¢.
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FIG. 24. Summary diagram of the physical processes involved in determining the equatorial trapping of atmospheric Rossby waves.
Diagram refers to the relationship between the induction of perturbation relative vorticity and the Rossby wave forcing mechanism by
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the ambient potential vorticity gradient and lead to a
slower reduction of the restoring force with latitude
and thus weaker trapping. Through the opposite effect,
the reduction of the ambient potential vorticity gra-
dient, easterly zonal winds lead to a substantially
stronger trapping. A summary diagram of the potential
vorticity interpretation is given in Fig. 24. The diagram
shows four physical systems (I through IV), the char-
acteristics of which are listed in the left column. The
second column shows latitudinal cross sections of the
“equivalent” shallow fluid systems. System I is non-
divergent with variable top slopes signifying the rota-
tional variability with latitude. Systems II through IV
are three surface systems that are divergent (/' denotes
the free surface deviation indicated by the curved solid
lines). The dashed lines in Systems II through IV refer
to the solid surface deviations with latitudes that em-
ulate the g-effect. The free surface deviation A, (straight
solid line in Systems III and IV) is the slope required
to geostrophically balance the zonal flow U. The shaded
vertical bars denote vortex tubes undergoing a north-
ward displacement Ay. The third column lists the re-

storing forces resulting from the latitudinal displace-
ments for U = 10, 0, —10 m s™!, respectively. The
distributions of the normalized restoring forces (i.e.,
{ £|/Ay) are shown in the fourth column and the extent
of trapping is described in the last column. Of particular
interest is the difference in the degree of trapping be-
tween Systems Il and IV,

(iii) The effects of shear on the equatorial waves are
quite complicated. In general, the eigenfrequencies
were found to be larger in the sheared basic zonal flows
with equatorial easterlies than in those with equatorial
westerlies for the westward propagating waves, but
smaller for the eastward propagating waves. The me-
ridional structures of the eastward propagating waves
are generally not significantly affected by the sheared
basic zonal flow, while the westward propagating waves
were found to be considerably less equatorially trapped
than those in a zero zonal flow.

In a qualitative sense at least, the general decrease
in the Rossby wave trapping in shear flow can also be
interpreted in terms of the potential vorticity conser-
vation. Even though the values of the sheared zonal
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flow EE and EW in Fig. 12 are of different sign at low
latitudes, both possess strong positive values of dU/
dy between the equator and the latitudes of the extra-
tropical westerly jet maxima. In terms of the equivalent
system discussed in (ii), the free surface height must
reduce rapidly with increasing latitude to support this
shear. This has the effect of enhancing the B-effect even
further. Consequently, the induced perturbation rela-
tive vorticity (i.e., the restoring force of the Rossby
wave oscillation) reduces even more slowly with lati-
tude, resulting in a reduction in trapping.

(iv) Returning to Fig. 13, we note that regions of
equatorial easterlies are at longitudes where strong lat-
itudinal shear exists. Equatorial westerly regions, on
the other hand, correspond to regions of weak shear.
For the Rossby wave, the combination of the sign of
‘the basic zonal flow at low latitudes and the impact of
shear still acts in the same direction as in the cases of
constant basic zonal flows. That is, those waves whose
zonal scales are smaller than the longitudinal variation
of the basic zonal flow will be much more trapped in
the eastern hemisphere than in the western hemisphere.
On the other hand, the westward propagating inertia—
gravity wave exhibits less trapped structures in easterly
basic zonal flows than when the flows are westerlies.

(v) The dependence of the westward propagating
equatorial waves upon the basic zonal flow suggests
that the variations in the atmospheric basic state must
be considered to explain the observed differences in
the wave characteristics, such as those discussed in sec-
tion 1. For example, in Fig. 19, & varies with k more
rapidly for the basic zonal flow EW (dotted line) than
for EE (dashed line), implying that the group velocity
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of the westward propagating mixed Rossby-gravity
wave should be faster in equatorial westerlies than in
equatorial easterlies. This difference has been observed
by Liebmann and Henden (1989) in the lower tropical
troposphere.

b. Implications to latitudinal interactions

(i) The dependence of the degree of equatorial wave
trapping on the sign and shear of the basic zonal flows
is of extreme importance if the dynamics of tropical-
extratropical interactions are to be understood. A
common concept is that in steady-state or stationary
regimes, the easterly regions of the deep tropics are
insulated from the extratropics by critical latitudes (e.g.,
Webster and Holton 1982; Nigam and Held 1983).
On the time scale of tropical convection, however, most
of the energy generated by latent heat release is carried
by transient inertia-gravity waves (Schubert et al.
1980). The results from this study indicate that direct
interactions between tropical easterly regions and ex-
tratropics are possible through the westward propa-
gating inertia—gravity wave since it is less equatorially
trapped within a sheared basic zonal flow with equa-
torial easterlies (e.g., EE in Fig. 18) and not affected
by a critical latitude. The possible impacts of the in-
ertia-gravity wave generated in the tropics on extra-
tropical large-scale motions have been reviewed by
Paegle et al. (1983).

(ii) On time scale for which the Rossby wave dom-
inates (e.g., the synoptic and low-frequency time
scales), the scenario of tropical-extratropical interac-
tion is quite different. It has been shown that stationary
waves are not capable of propagating in and out of
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FIG. 25. The distribution of the turning latitude of an equatorially trapped Rossby wave as a function of longitude and latitude
in the two-dimensional basic boreal winter 200 mb zonal wind shown in Fig. 11. Letters X and Y denote forcing locations.
Forcing located at X where y > y, will not project significantly on equatorial trapped waves. Forcing located at Y where y < y,

will force trapped waves.



15 DECEMBER 1989

tropical easterly regions because of the existence of
critical latitudes. However, they are free to propagate
through the tropical westerly areas (Webster and Hol-
ton 1982). In this study we have shown that transient
Rossby waves are less trapped in equatorial westerlies
than in equatorial easterlies. Tlerefore, it appears that
the tropical-extratropical interactions through Rossby
waves on a wide time scale are more likely to occur at
longitudes where the tropical basic zonal winds are
westerlies.

The consequences of these conclusions with respect
to weather and climate are summarized in the sche-
matic diagram Fig. 25. The diagram shows qualitatively
the variation of a Rossby wave turning latitude (dashed
lines) within a boreal winter basic zonal flow at 200
mb. A strong longitudinal variation depending upon
the sign of the basic zonal flow and the degree of lati-
tudinal shear is apparent. Regions exist where the
equatorial Rossby wave extends well into the extra-
tropics and others where it is constrained laterally about
the equator. Clearly, the variation of the basic state has
a dominant influence on the modal structure.

We feel justified in making the following speculations
that relate directly to the interactions of remote cir-
culation regimes. These are:

1) Webster and Chang (1988) suggested that tran-
sient Rossby waves emanate from their energy accu-
mulation region within the upper tropospheric west-
erlies. The results from this study allow another inter-
pretation of their “emanation.” Rather than the
production of a Rossby wave train, in which the equa-
torial westerlies act as a wave train source, the influence
on the extratropics may better be thought of as a “wave-
swelling” since equatorial Rossby waves propagating
along the equator into the westerlies increase their

turning latitudes substantially and, in this sense, extend '

their influences into the extratropics. It should be re-
membered, however, that these waves are longitudi-
nally trapped by the stretching deformation of the basic
zonal flow to the west of the region where the lateral
influence takes place.

2) Since the wave regions of certain equatorially
trapped Rossby waves can extend well into the extra-
tropics, midlatitude forcing sources may project onto
equatorial waves and thus excite trapped waves along
the equator. It is thus conceivable that midlatitude in-
fluences can extend into the easterly regimes of the
tropics, but via the generation of trapped waves in the
westerlies which then propagate along the equator. For
example, the forcing source located near X in Fig. 25,
and thus at a latitude where y > y,, will not project
significantly onto equatorially trapped waves. On the
other hand, forcings located near Y where y < y, can
invoke trapped responses. This process is a refinement
of the Webster-Holton hypothesis, which saw the mid-
latitude influencing the tropics in the steady-state re-
gime if the wave sources were placed along ray paths
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that led into the “westerly duct” (Webster and Holton
1982).

The two speculations discussed in 1) and 2) indicate
the importance of the westerly regions of the upper
troposphere, in general, and the Pacific Ocean, in par-
ticular. On interannual time scales the dynamics of the
coupled ocean-atmosphere system of the Pacific Ocean
appear to dominate. On a much broader time span,
the atmosphere over the eastern Pacific Ocean appears
as a clear corridor for the interaction of waves either
generated in the extratropics or in the tropics. More
formally, it may be stated that the eastern tropical Pa-
cific Ocean is a region where the influence regions of
a broad range of waves, normally geographically iso-
lated from each other, tend to overlap.
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