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ABSTRACT

Teleconnections between the midlatitudes of the Northern and Southern Hemispheres are diagnosed in National
Centers for Environmental Prediction–National Center for Atmospheric Research reanalysis data and separately
in European Centre for Medium-Range Weather Forecasts reanalysis data. The teleconnections are manifested
as a small but significant tendency for blocking to occur simultaneously in the two hemispheres, though at
different longitudes and different relative latitudes, during boreal winters over the period 1979–94 in both
datasets.

One way to explain the correlations between blocking events is as an instance of synchronized chaos,
the tendency of some coupled chaotic systems to synchronize, permanently or intermittently, regardless
of initial conditions. As the coupling is weakened, the systems no longer synchronize completely, but small
correlations between the states of the coupled systems are observed instead. In previous work, such behavior
was observed in an idealized coupled-hemisphere model constructed from a midlatitude model due to de
Swart, which extended the earlier Charney–DeVore spectral truncation of the barotropic vorticity equation
by including a few extra modes. The direct coupling of the two midlatitude systems in the coupled-
hemisphere model represented the exchange of Rossby waves through the upper-tropospheric ‘‘westerly
ducts’’ in the Tropics.

Significant correlations are found between blocking events, which are chaotically timed in each hemisphere
considered singly, even without several of the idealizations used in the previous study. In a model modified to
include an extended tropical region, the correlations are little affected by attenuation and phase shift of the
Rossby waves that couple the two midlatitude systems. Variations in the relative longitudes of topographic
features in the two hemispheres leave significant correlations or anticorrelations. The annual cycle, which imposes
directionality on the coupling, since the Northern Hemisphere is more strongly forced than the Southern Hemi-
sphere at the times when the hemispheres are coupled, increases the correlations slightly. A two-hemisphere
model constructed from a higher-order (wavenumber 3) truncation of the barotropic vorticity equation exhibits
regime transitions between blocked and zonal flow at a more realistic rate in each hemisphere but still exhibits
interhemispheric correlations.

1. Introduction and background

Since the inception of the modern concept of deter-
ministic chaos, considerable attention has been given to
the proposition that large-scale atmospheric circulation
might be governed by low-order chaotic dynamics.
Low-order models of the midlatitude system, based on
spectral truncations of the barotropic vorticity equation,
have been proposed by Legras and Ghil (1985) and by
de Swart (1988, 1989). Even more familiar is the use
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of low-order chaos (Jin et al. 1994; Tziperman et al.
1995) to describe the irregularity of the El Niño–South-
ern Oscillation (ENSO) cycle found in operational mod-
els of the tropical coupled atmosphere–ocean system
(Zebiak and Cane 1987). Recently, convincing evidence
was presented that the aperiodicity in the Cane–Zebiak
model of the ENSO cycle is indeed due to low-order
chaos: periodicity can be restored by controlled feed-
back to a single degree-of-freedom in the model (Tzip-
erman et al. 1997).

Yet a model of the global circulation as a single low-
order system does not seem possible. A more modest
goal, following a suggestion of Lorenz (1991), is to
understand the emergent properties of a collection of
loosely coupled chaotic systems, each describing a semi-
autonomous component of the global system. The cou-
pling of the tropical and midlatitude systems, or of the
monsoon and ENSO systems, may support descriptions
of this type.
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A paradigm that may be relevant to the behavior of
coupled atmospheric subsystems is that of synchronized
chaos. Identical or similar chaotic systems can fall into
synchronized motion along their strange attractors in a
variety of unidirectional (Pecora and Carroll 1990; Ko-
carev et al. 1997) or bidirectional (Afraimovich et al.
1986; Fujisaka and Yamada 1983) coupling schemes.
The tendency toward synchronization, at first surprising
because of the sensitive dependence of each system on
values of dynamical variables that are not shared, is
possible because those variables that are shared capture
the ‘‘chaotic’’ behavior of each system, so that the ‘‘sub-
Lyapunov’’ exponents, which describe the divergence
of phase-space trajectories emanating from nearby
points that differ only in the values of the unshared
variables, are still negative (Pecora and Carroll 1990).
As the coupling is weakened, synchronization degrades
through on–off intermittency, that is, through bursts of
desynchronization, timed chaotically, amidst otherwise
synchronous behavior (Afraimovich et al. 1986).

Atmospheric teleconnections, as conceived originally
by Walker (1924), imply a form of synchronized chaos
in the context of Lorenz’s (1991) view of the atmosphere
as a collection of coupled chaotic subsystems. Walker,
in his search for predictors of the Indian monsoon, pos-
tulated relationships between meteorological parameters
at remote points on the globe, without knowledge of
specific dynamical mechanisms for such connections,
which were only elucidated much later (Bjerknes 1969;
Hoskins and Karoly 1981; Webster 1981, 1982). In
Walker’s view, hope for monsoon prediction lay more
with an understanding of such relationships than with
an understanding of the regional dynamics of the mon-
soon system itself. Viewed in terms of the modern con-
cept of synchronized chaos, each chaotic climate sub-
system, such as the monsoon system, is unpredictable;
yet, a teleconnection between two such subsystems is
defined by correlations between their gross states. It is
now known that strong monsoons, for instance, show a
statistical tendency to occur in La Niña years and weak
monsoons in El Niño years (Yasunari 1990; Webster
and Yang 1992), though neither the monsoon nor ENSO
is predictable more than a year in advance. But, while
synchronized chaos has been investigated extensively
in low-order systems, synchronization in naturally oc-
curring or spatially extended systems, governed by par-
tial, rather than ordinary differential equations, is rel-
atively new (Kocarev et al. 1997; Sushchik 1996; Duane
1997).

By describing the large-scale atmospheric circulation
in terms that allow for the possibility of synchronized
chaos, we may gain insight regarding known telecon-
nection patterns and enable the prediction of new ones.
For subsystems that are not identical, one must define
a notion of corresponding states to define synchroni-
zation, and the correspondence may not be apparent a
priori. Though there are algorithms to determine wheth-
er the trajectories of two coupled systems exhibit syn-

chronization in this more general sense (Rulkov et al.
1995), the task of determining whether a correspon-
dence between states exists and defining it is expectedly
greater the greater the difference between the systems.
The difficulty is exacerbated for spatially extended sys-
tems. We therefore begin by considering teleconnections
between similar systems, where the similarity arises
from an overall symmetry of the combined systems,
which also makes the corresponding states obvious.
Such a situation exists in the case of teleconnections
between the two midlatitude systems because of reflec-
tion symmetry about the equator. The teleconnections
are mediated by the exchange of Rossby waves through
the tropical ‘‘westerly ducts’’ (Webster and Holton
1982), which interrupt the band of upper-tropospheric
tropical easterlies.

Duane (1997) recently showed the existence of such
teleconnections in a highly truncated (wavenumber 2)
barotropic model of the interaction between the hemi-
spheres constructed from b-plane models of the two
midlatitude systems (de Swart 1988, 1989), assuming
idealized geometry with a tropical easterly barrier that
has no latitudinal extent, and ignoring the annual cycle.
While the de Swart model requires unrealistically large
thermal forcing to avoid stable fixed points, the inter-
hemispheric teleconnections found in the two-hemi-
sphere model would also be expected in a more realistic
model based on spherical geometry. The teleconnections
are manifested as a small but significant tendency for
the two midlatitude systems to both exhibit blocked flow
or to both exhibit zonal flow at the same instant of time.

It is shown here that a diagnostic used to define
blocked flow in observed data in the Northern Hemi-
sphere can be readily generalized for use in the Southern
Hemisphere and is especially suited for computing co-
occurrence statistics. Results indicate a correlation be-
tween blocking events, as predicted by the wavenumber
2 model. We then show that the correlations in this
highly truncated model persist if we consider phase
shifts and attenuation due to the finite latitudinal extent
of the Tropics and that correlations are also found in a
model that includes some higher modes in the midlat-
itudes. The specific form of the global topography used
in the highly truncated model can also be relaxed. For
a general longitudinal positioning of topographic fea-
tures in the Southern Hemisphere, relative to those in
the north, correlations or anticorrelations occur in the
model. Finally, the annual cycle is shown to reinforce
the correlations observed in the simple model, appar-
ently by imposing a directionality on the coupling, with
the summer hemisphere driven by the more strongly
forced winter hemisphere to a slight degree.

2. Southern Hemisphere blocking

Teleconnections between the midlatitude regions of
the two hemispheres are defined here in terms of cor-
relations between the gross regimes simultaneously oc-
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FIG. 1. Fraction of all analysis times at which the Northern Hemi-
sphere circulation is blocked at given longitude, according to the
Tibaldi–Molteni diagnostic, in the 1979–94 NCEP–NCAR data (solid
line), and in the 1979–93 ECMWF data (dashed line) during boreal
winters. The resolution in both datasets is 2.58 in both latitude and
longitude.

cupied by the two midlatitude systems. The description
of weather as a dichotomous system often appears nat-
ural, and correlations between regimes may give a first
indication of correlations between meteorological pa-
rameters. It has been suggested by Palmer (1993), for
instance, that the midlatitudes might be compared to a
Lorenz system, with the two halves of the butterfly-
shaped attractor corresponding to zonal and blocked
flow, respectively. The effect of the tropical–extratrop-
ical teleconnection, in this metaphorical view, is then
to bias the Lorenz-system attractor so that the system
spends more time on one-half of the butterfly than the
other, depending on conditions in the Tropics that
change over a longer timescale.

Atmospheric regimes are expectedly more difficult to
define than the regimes of the symmetrical Lorenz sys-
tem. While some earlier studies of hemispheric flow
regimes (e.g., Webster and Keller 1974) were based on
global diagnostics applied to the entire midlatitude flow
to define an index cycle, this approach has generally
been replaced by definitions of blocked states based on
the presence of actual blocks at well-defined locations.
Blocks have been defined differently by different au-
thors (Rex 1950; Treidl et al. 1981; van Loon 1956;
Wright 1974; Charney and DeVore 1979; Tibaldi and
Molteni 1990). Since relatively little work has been done
on Southern Hemisphere blocking, either theoretically
or observationally, some care is devoted in this discus-
sion to an appropriate definition of the blocked flow
regime in the Southern Hemisphere. An early opera-
tional definition of blocking in the Northern Hemisphere
was given by Rex (1950), who labeled a given circu-
lation pattern as blocked if and only if the 500-mb west-
erly current splits into two branches, each of which
transports an appreciable mass in a split pattern ex-
tending over at least 458 of longitude and persisting
continuously for at least 10 days, causing a sharp tran-
sition between an upstream zonal-type flow and a down-
stream meridional-type flow. Treidl (1981) added a re-
quirement that there be a surface high, shortened the
required duration to 5 days, and excluded blocks ex-
tending south of 308N (considering only Northern Hemi-
sphere blocks). Blocking events thus defined were found
to occur primarily over the Atlantic or Pacific Oceans
at an average latitude of 568N.

A less arbitrary, more easily programmed definition
of blocking was given by Tibaldi and Molteni (1990),
who defined a block in the Northern Hemisphere as a
coarse-resolution local maximum of 5-day-averaged
500-mb height on a given meridian, with the require-
ment that the gradient of height on the northern side of
the block exceed a given threshold so as to exclude
artifacts arising from large southward displacement of
the midlatitude westerly jet. Formally, the Tibaldi–Mol-
teni diagnostic is defined in terms of the geopotential
height gradients for each longitude l, at each instant of
time t:

z(f , l, t) 2 z(f , l, t)0 2GHG1(l, t) 5
f 2 f0 2

z(f , l, t) 2 z(f , l, t)1 0GHG2(l, t) 5 , (1)
f 2 f1 0

where z is the 5-day-averaged geopotential height,

f 5 608N 1 D0

f 5 f 1 208 1 D1 0

f 5 f 2 208 1 D, (2)2 0

and

D 5 258, 08, or 1 58. (3)

(The values D 5 248, 08, or 1 48 were originally used
by Tibaldi and Molteni for an earlier dataset with a
different grid interval.) The circulation is said to be
blocked at longitude l and time t if and only if

GHG1(l, t) . 0 and GHG2(l, t) , 210 m deg21

(4)

for at least one value of D in (3). In the Northern Hemi-
sphere f 0 is chosen to be 608N, requiring blocks to be
centered within 58 of 608N. Blocking frequency com-
puted with the diagnostic (4) for each longitude l, using
National Centers for Environmental Prediction–Nation-
al Center for Atmospheric Research (NCEP–NCAR)
data (Kalnay et al. 1996), is plotted in Fig. 1. The dashed
line in the figure gives the frequencies computed using
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FIG. 2. Blocking frequencies as in Fig. 1 (NCEP–NCAR data only)
but for the Southern Hemisphere (thick line), using the same blocking
diagnostic, except applied at 408S instead of 608N. Results are also
shown for the same diagnostic modified to include an additional value
of D 5 108 in (3) (dotted line), to detect any blocking at higher
southern latitudes, and using 3-day-averaged height data (thin solid
line) instead of 5-day-averaged data.

the European Centre for Medium-Range Weather Fore-
casts (ECMWF) dataset instead. Results for the two da-
tasets agree well. Tibaldi and Molteni stressed that such
definitions, not involving additional requirements of
minimum duration and longitudinal extent, were partic-
ularly useful in ‘‘comparison mode,’’ as in comparing
analyses to forecasts or one longitude to another. Here,
the Tibaldi–Molteni definition is used to study the cooc-
currence of blocked states in the Northern and Southern
Hemispheres.

Most observational work on Southern Hemisphere
blocking stems from the work of van Loon (1956), who
compiled statistics using a definition similar to Rex’s
(1950). Van Loon’s definition, as modified by Wright
(1974), differed from the early definitions of blocking
in the Northern Hemisphere principally in that it was
necessary to exclude the climatological subtropical high
in the Southern Hemisphere and fast-moving high pres-
sure centers. These early studies found three centers of
blocking activity in the Southern Hemisphere, corre-
sponding to the three major land masses (though they
occur downstream of these land masses, unlike their
Northern Hemisphere counterparts, which occur up-
stream of the two major land masses). Blocks were
found to occur with frequency comparable to that of
Northern Hemisphere blocks but are less intense, of
shorter duration, and occur at more equatorward lati-
tudes.

The Tibaldi–Molteni diagnostic can be extended to
the Southern Hemisphere by replacing the latitudes in
(2) by suitable southern latitudes. We choose f 0 5 408S
to detect blocks formally centered at 358, 408, or 458S,
obtaining the longitudinal distribution of blocking
shown in Fig. 2, where attention is restricted to the
boreal winter months, a period of relatively frequent
blocking in both hemispheres. It was found that higher
southern latitudes exhibited no significant blocking, ac-
cording to this diagnostic, as can be seen from the dotted
line in Fig. 2, which represents the effect of including
an additional value of D 5 1108 in (3). The use of
lower latitudes, on the other hand, leads to the confusion
of tropical phenomena with midlatitude blocking events.

One might seek to lower a threshold in the diagnostic
to detect Southern Hemisphere blocks since these have
been reported to be less intense (Coughlan 1983) than
Northern Hemisphere blocks. That Southern Hemi-
sphere blocks are weaker is indeed confirmed in Fig. 3,
displaying Hovmöller plots, for both hemispheres, of
the quantity GHG1 (the maximum value over the three
possible values of D) for a typical boreal winter period
at locations and times where both conditions in (4) are
satisfied. (The GHG2 condition is less restrictive than
the GHG1 condition and so is of less value as an in-
dication of blocking intensity. In the Northern Hemi-
sphere, the GHG2 condition is used only to distinguish
between blocks and equatorward displacements of the
midlatitude jet. In the Southern Hemisphere, the GHG2
condition is found to be satisfied everywhere that the

GHG1 condition is satisfied.) However, the magnitude
of GHG1 plays no role in the diagnostic itself. Nor is
there another apparent way to modify the diagnostic to
detect weaker blocking events. Changing the length
scale over which the gradients are computed (from 208
to 108 or 58) was not found to be useful. To increase
sensitivity to short-lived events, we examined results
obtained with a 3-day average instead (thin line in Fig.
2) and found a small increase in blocking frequency but
in almost exact proportion to the original frequency at
each longitude. We therefore maintain the 5-day average
in our definition for uniformity with the Northern Hemi-
sphere definition.

Although van Loon (1956) and Wright (1974) im-
posed restrictions on the rate of zonal progression of a
moving block, such restrictions are not needed for the
purpose of comparing analyses to forecasts or compar-
ing ‘‘blocking’’ frequencies at different longitudes. Sim-
ilarly, they will not be needed for the purpose of com-
paring blocking behavior in the two hemispheres. Of
greater importance are the attempts of both these authors
to distinguish, in their definitions, between blocking
events and the climatological subtropical high, which is
extracted from the ECMWF data in Fig. 4. (In the North-
ern Hemisphere, where blocks occur at higher latitudes,
the distinction is obvious.) As can be seen in the figure,
the subtropical high pressure center off the western coast
of South America (about 358S) is bigger and a bit more
southerly than the other high pressure centers. If we
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FIG. 3. Hovmöller plots of blocking intensity, represented by the
maximum value of GHG1 in (1) over the three values of D at each
longitude and time in a boreal winter period in the second year of
the NCEP–NCAR data, for (a) the Northern Hemisphere at 608N and
(b) the Southern Hemisphere at 408S. Only positive values of GHG1,
at locations for which GHG2 , 210 m degree21, corresponding to
blocked states, are plotted. The contour interval is 2 m degree21.

adopt Wright’s (1974) requirement that part of the block
be at least 78 south of these high pressure centers and
interpret the region of the block as extending D 5 58
north and south of the formal center, we are led to ex-
clude the value D 5 258, corresponding to a formal
center at 358, from the set (3), in defining blocking in
this region of the South Pacific. Taking this region R [
{l | 1608W , l , 608W} as a rough estimate, we re-
place (3) by

08 or 58 if l ∈ R
D 5 (5)5258, 08, or 58 otherwise.

The longitudinal distribution of blocking, according to
the Tibaldi–Molteni definition, thus modified, is shown
in Fig. 5, for the NCEP–NCAR and ECMWF reanalysis
datasets. The large peak at 1208W in Fig. 2, correspond-
ing to the climatological subtropical high, has been elim-
inated in Fig. 5, though there is a small vestige of it in
the case of the ECMWF data. The difference between
the two distributions in Fig. 5 is notably larger than for
the distributions in the Northern Hemisphere, shown in
Fig. 1, presumably because of the relative scarcity of
observations and hence greater sensitivity to differences
between forecast models used in the Southern Hemi-
sphere. The slight southward displacement of the cli-
matological high pressure center off the coast of South
America, as compared to the other two centers, was in
fact not detected in the NCEP–NCAR dataset. Never-
theless, we regard the displacement of this center in the
ECMWF data as evidence that the large peak in Fig. 2
is due to the subtropical high and not to blocking.

For both distributions shown in Fig. 5, the peaks cor-
respond roughly to the three major areas of Southern
Hemisphere blocking identified by van Loon (1956).
Error in the plots, which is primarily due to error in
forecast models rather than instrument error, can be in-
ferred from the difference between the ECMWF and
NCEP–NCAR distributions, implying that only the
broad structure of the peaks is meaningful. The peak
centered at 508E agrees well with van Loon’s Indian
Ocean center. The double peak between about 1258E
and 1608W similarly agrees with van Loon’s Australian–
Pacific region. The broad peak in our figure centered
about 308W is displaced by about 208 from van Loon’s
Atlantic center and is smaller in magnitude, but the
correspondence is clear. Given that no satellite data were
used in van Loon’s analysis, the agreement between our
distribution and his is striking and tends to validate our
choice of blocking diagnostic.

3. Co-occurrence of Northern and Southern
Hemisphere blocks in observed data

Any relationships between the two possible regimes
(zonal or blocked) occupied simultaneously by the two
hemispheres can be gleaned naively from the rates of
occurrence of the four possible combinations. We ex-
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FIG. 4. Climatological surface pressure in ECMWF data for 1979–93 boreal winters. Latitudes of the subtropical high pressure centers
are indicated. (Other climatological data are also indicated: arrows represent wind speed and shading represents outgoing longwave
radiation.)

TABLE 1. (a) Relative frequencies of cooccurrence of regime pairs
in NCEP–NCAR data for boreal winters in the period 1979–94, rep-
resented as joint probabilities Pi,j. Regimes are defined using the di-
agnostic in (4) and (5). (b) The joint probabilities for independentindPi,j

subsystems, each with the same probability of occupying either re-
gime as in (a), i.e., . The correlation C isindP 5 (S P ) (S P )i,j j5z,b i,j i5z,b i,j

defined in (7). Error bars on C were computed as twice the standard
error of the mean in a partitioned dataset. The value p is the prob-
ability that the correlation value C would be obtained for uncorrelated
time series of the same length, assuming that the values C are chi-
squared distributed with a decorrelation time of 15 days.

(a) (b)
P

N zonal N blocked

Pind

N zonal N blocked

S zonal
S blocked

0.21
0.16

0.23
0.40

C 5 0.20 6 0.14

0.16
0.20

0.27
0.36

p 5 0.05

FIG. 5. Blocking frequencies for boreal winters in Fig. 2, except with
the modified diagnostic in (4) and (5) that excludes too close to the
climatological subtropical high. Results are shown for the NCEP–
NCAR data (solid line) and for the ECMWF data (dashed line).

amine the cooccurrence statistics for these four possible
regime pairs in the NCEP–NCAR data, expressed as a
matrix of joint probabilities Pi,j [where i, j 5 z (zonal)
or b (blocked)] in Table 1. The probability Pi,j is the
fraction of all analysis times, during boreal winters, at
which the Northern Hemisphere is in regime i and the
Southern Hemisphere is in regime j. Also shown are the
corresponding probability values in the case whereindPi,j

the two hemispheres individually have the same statis-
tics but are assumed independent, that is,

indP 5 P P . (6)O Oi , j i ,r s, j1 21 2r5z,b s5z,b

The diagonal elements of the matrix P are larger than
those of the matrix Pind, while the off-diagonal elements
are smaller. This configuration indicates correlation. The
standard correlation between the two binary-valued ran-
dom variables Q and R, which label the regimes of the
two subsystems, is defined as C [ ^(Q 2 ^Q&)(R 2 ^R&)&/
(sQsR), where Q 5 1 (R 5 1) when the Northern Hemi-
sphere (Southern Hemisphere) is blocked and Q 5 0 (R
5 0) otherwise. (^& denotes a time average.) The cor-
relation can also be expressed in terms of the joint prob-
abilities as

indP 2 Pbb bbC [ . (7)
P P P PO O O Oz,r b,r s,z s,b

r5z,b r5z,b s5z,b s5z,b!
A significantly positive correlation value is shown in
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TABLE 2. Co-occurrence matrices, correlation coefficient, and p
value as in Table 1 but for the ECMWF 1979–93 dataset.

(a) (b)
P

N zonal N blocked

Pind

N zonal N blocked

S zonal
S blocked

0.19
0.17

0.19
0.45

C 5 0.23

0.14
0.22

0.24
0.40

p 5 0.03

FIG. 6. Lagged correlation values C defined as in Table 1 but for
the Northern Hemisphere time series of regime labels shifted, relative
to the Southern Hemisphere time series, by a number of days indicated
on the horizontal axis. (Negative values represent Southern Hemi-
sphere lead.) Correlations are shown for NCEP–NCAR data (solid
line) and ECMWF data (dashed line) for boreal winters.

TABLE 3. Relative frequencies of co-occurrence of regime pairs in
NCEP–NCAR data as in Table 1 but for full-year statistics.

(a) (b)
P

N zonal N blocked

Pind

N zonal N blocked

S zonal
S blocked

0.33
0.08

0.44
0.15

C 5 0.07

0.32
0.09

0.46
0.13

p 5 0.50

Table 1. Interestingly, this correlation value was un-
changed when the simpler diagnostic that does not ad-
just for the presence of the climatological subtropical
high, was used to define Southern Hemisphere blocking
(though the individual Pij values did change). Since
there is no reason to expect small fluctuations in the
subtropical high that might be mistaken for blocking
events to correlate with synoptic regimes in the opposite
hemisphere, this result also tends to validate our some-
what crude method of distinguishing between the sub-
tropical high and blocking events.

The 2-s error shown in the table was obtained by
partitioning the data into five subsets and computing the
standard error of the mean. As an additional significance
test, we computed the variance about zero correlation
in collections of uncorrelated datasets created artificially
by shifting the time series in one of the hemispheres,
giving a 2-s error equal to or lower than that shown in
the table. As a third significance test, we assumed that
the correlation values C are chi-squared distributed, that
is, x2 5 nC2, with n denoting the number of decorre-
lation intervals in the entire time series. The probability
p, that any value x9 in the distribution is such that x9
$ x, is the probability that two randomly chosen time
series of uncorrelated data of equal length will exhibit
a correlation that exceeds C. A p value of 0.05 or less,
as shown in the table for an assumed maximum decor-
relation time of 15 days, indicates significant correla-
tion.

A similar interhemispheric correlation is found for
the ECMWF data, analyzed in Table 2, despite the dif-
ferences between the two datasets seen in Fig. 5. Lagged
correlations are plotted for both datasets in Fig. 6. The
largest correlations are simultaneous, not delayed, al-
though there is some asymmetry with respect to time
ordering in the lagged correlations, which are smaller
and marginally significant.

Comparing the boreal winter statistics, on the other
hand, to statistics for the entire period 1979–94, we see
that the correlation C for the full-year NCEP–NCAR
data shown in Table 3 is reduced. Taking the traditional
view of teleconnections as mediated by the exchange
of Rossby waves (e.g., Hoskins and Karoly 1981), the
enhanced correlations during winters can perhaps be
understood. Rossby waves between the hemispheres can
propagate through the Tropics only at longitudes where
the upper tropospheric winds are westerly, as illustrated
in the simulation in Fig. 7 (Webster and Holton 1982),

for reasons reviewed in the next section. As shown in
the Hovmöller plot of upper tropospheric winds in Fig.
8, such regions, the westerly ducts, open and close sea-
sonally. Strong westerlies, which allow the least atten-
uated transmission of Rossby waves, exist only during
boreal winters. If the correlations linking blocking ac-
tivity in the two hemispheres are due to the exchange
of Rossby waves, at least in part, then the correlation
values should be greater during the winter months.

One might also ask whether the correlations are en-
hanced if we restrict attention to a specific band of lon-
gitudes, in the vicinity of the westerly ducts. Statistics
for the Pacific region are displayed in Table 4. It is seen
that blocking activity in the North Pacific is no more
likely to be accompanied by blocking in the South Pa-
cific than it is to be accompanied by blocking anywhere
else in the Southern Hemisphere. The Rossby wave sig-
nal through the westerly ducts, if this is indeed the cause
of the correlations, would appear to affect the circulation
of the entire opposite hemisphere.



4190 VOLUME 56J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 7. Rossby wave penetration of the tropical westerly ducts in
a high-resolution numerical model of shallow-fluid dynamics: (a)
Contours of a prescribed basic-state zonal wind field u (in m s21),
intended to represent climatological conditions in the Tropics. Re-
gions of easterly wind u , 0 are shaded. (b) Contours of perturbation
zonal wind u at t 5 100 days, with basic state as in (a), after ini-
tialization by a localized perturbation at 208N at t 5 0 [reprinted by
permission from Webster and Holton (1982)].

FIG. 8. Contour plot of the zonal component of the observed upper-
tropospheric (200 mb) tropical wind u (in m s21), which defines the
westerly ducts, vs longitude and time. The tropical wind is defined
as the average of the wind between 108N and 108S, also averaged
over 30 days. The contour interval is 10 m s21. Solid contours rep-
resent positive (westerly) values of the wind. Dotted contours rep-
resent u 5 0 (computed from NCEP–NCAR reanalysis data).

TABLE 4. Relative frequencies of co-occurrence of regime pairs in
NCEP–NCAR data as in Table 1 but only considering blocks in the
Pacific region between 1208E and 1508W. (Circulation patterns with
blocks occurring at other longitudes are counted as ‘‘zonal.’’)

(a) (b)
P

N zonal N blocked

Pind

N zonal N blocked

S zonal
S blocked

0.45
0.20

0.21
0.14

C 5 0.09

0.43
0.22

0.23
0.12

p 5 0.39

4. The synchronized chaos model

a. Low-order models of the separate midlatitude
systems

In this section, we sketch the derivation of Duane’s
(1997) model of the coupled hemispheres so that we
may augment it to capture several features of the real
atmosphere that were ignored in the previous study.

Regime transitions between blocked and zonal flow
in each hemisphere can be conceptualized as the result
of low-order chaos. A low-order chaotic model of the
midlatitudes in one hemisphere, due to de Swart (1988,
1989), appears to capture the qualitative features of the
large-scale circulation. The model is constructed from
the barotropic vorticity equation:

2](¹ C)
21 J(C, ¹ C 1 f ) 1 gJ(C, h)

]t
21 m¹ (C 2 C*) 5 0, (8)

where C is the streamfunction, which gives the x and
y components of horizontal velocity u 5 2]C/]y, y 5
]C/]x; t is time; f is twice the locally vertical com-
ponent of the rotation vector, which defines the Coriolis
force; h is the bottom topographic height; g 5 f 0h0/H
is a coefficient of topographic forcing; f 0 is a typical
value of f ; H is the average height of the atmosphere,
h0 is a topographic height scale; and m is a coefficient
of bottom friction. The forcing streamfunction C* rep-
resents the flow forced by the equator-to-pole temper-
ature gradient, which would define an equilibrium state
in the absence of topographic effects. The advection
Jacobian J is
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TABLE 5. The truncated basis that defines the de Swart (1988, 1989)
model of the single-hemisphere midlatitude circulation, given by the
streamfunction .10C 5 S x (t)Yi51 i i

y
Y 5 Ï2b cos1 b

y
Y 5 2b sinx sin3 b

2y
Y 5 2b cosx sin5 b

y
Y 5 2b cos2x sin7 b

2y
Y 5 2b cos2x sin9 b

y
Y 5 2b cosx sin2 b

2y
Y 5 Ï2b cos4 b

2y
Y 5 2b sinx sin6 b

y
Y 5 2b sin2x sin8 b

2y
Y 5 2b sin2x sin10 b

]A ]B ]A ]B
J(A, B) [ 2 . (9)

]x ]y ]y ]x

The midlatitude system is represented as a narrow
channel between two circles of latitude, of width B (in
the meridional, or y, dimension) and length L (in the
zonal, or x, dimension), with periodic boundary con-
ditions in x. The conditions imposed at the northern and
southern boundaries are that the meridional wind y and
the circulation # udx vanish, that is,

]C
5 0 y 5 0 or y 5 pb (10a)

]x

]C
dx 5 0 y 5 0 or y 5 pb, (10b)E ]y

where we have nondimensionalized x and y by defining
a length scale L/2p and we have introduced the non-
dimensional constant b [ 2B/L. The channel is assumed
to lie on a b plane, with ] f /]y 5 b. The time t is
nondimensionalized by defining a timescale equal to 105

s 5 1.16 days, giving a nondimensional b of order unity.
A six-component spectral truncation of the barotropic

vorticity equation (8) was shown by Charney and De-
vore (1979) to exhibit multiple equilibria corresponding
to different weather regimes in the atmosphere. More
recently, de Swart (1988, 1989) showed that a corre-
sponding 10-component spectral truncation of (8) ex-
hibits chaotic behavior with a strange attractor that gives
vacillation between regimes. De Swart projected onto
the basis F j 5 for j1 an integer and j2 a positiveFj ,j1 2

integer:

y
F 5 Ï2 cos j (11a)0, j 22 1 2b

y
ij x1F 5 Ï2e sin j . (11b)j , j 21 2 1 2b

The corresponding eigenvalues lj, defined by ¹2Fj 5
2ljFj [where j 5 (j1, j2)], are lj 5 1 /b2. The j1

2 2j j1 2

5 0 modes consist of purely zonal flow (y 5 /2]F0,j2

]x 5 0), while the |j1| . 0 modes consist of Rossby
waves that are traveling in x and standing in y. That is,
the sreamfunction C(x, y, t) 5 (|j1| . 0), where2iv tjF ej ,j1 2

2bj 2bj1 1v 5 5 (12)j 2 2l j 1 ( j /b)j 1 2

is a Rossby wave that satisfies (8) with h 5 m 5 C*
5 0.

The expansion of the streamfunction C, the forcing
‘‘streamfunction’’ C*, and the topography h in the basis
(11) is defined by

(C, C*, h) 5 (c , c*, h )F . (13)O j j j j
j

The projection of the barotropic vorticity equation (8)
onto the the eigenfunctions (11) is found to be

1
l ċ 5 c (l 2 l )c c 1 g c c hO Oj j j lm l m l m jlm l m2 l ,m l,m

1 b c 2 ml (c 2 c*), (14)O j l l j j j
l

where

1
c [ F J(F , F ) dx dyjlm E j l m22p b

1
b [ F J(F , f ) dx dy,jl E j l22p b

with J denoting the advection Jacobian defined by (9)
and overbars denoting complex conjugates. Expres-
sions for the coefficients cijk and bjl are given in the
appendix.

Assuming simple forms for the topography and
forcing, truncating (13) to |j1|, j 2 # 2, and substituting
an expansion in a real basis C(x, y, t) 5 S i x i (t)Y i (x,
y) for the expansion (13), where the new basis func-
tions are given in Table 5, de Swart (1988, 1989)
obtained a 10-component dynamical system. A prob-
lem with the de Swart model is that it requires un-
realistically large values of the thermal forcing C*,
and hence of the background winds u 5 2 , toC*y
avoid stable fixed points. This problem can be re-
garded as an artifact of the truncation and of the b-
plane approximation since Legras and Ghil (1985),
for instance, constructed a similar model with more
modes and with spherical geometry that behaves ap-
propriately for realistic values of the forcing. There-
fore, for the purpose of studying relationships be-
tween the two hemispheres qualitatively, we adopt the
simpler de Swart model.

A typical trajectory of the system (14) is represented
in Fig. 9 by a time series of values of the amplitude x1

of the gravest zonal flow mode. Regime structure is
manifested as different ranges of oscillation in different
portions of the time series. A careful analysis (de Swart
1988, 1989) actually reveals three regimes correspond-
ing to three unstable fixed points, but two regimes are
easily discerned in the figure. The value of the variable
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FIG. 9. A typical trajectory of the 10-component de Swart
(1988,1989) model of the midlatitude atmospheric circulation, spec-
ified by projecting (8) onto the eigenfunctions given in Table 5. The
values x1 are plotted vs t for an adaptive Runge–Kutta numerical
integration with nondimensional parameters: b 5 1.25, m 5 0.1, g
5 1, b 5 1.6, 5 4, and 5 28, where the thermal forcing isx* x*1 4

given by C* 5 S i51,4 (t)Y i . This corresponds to f 0 and b at 458x*i
latitude, a topographic height of 1 km, a dissipation timescale of
12 days, and background winds of up to 210 m s21 . Only t . 1500
(in nondimensional time units) is displayed so as to exclude tran-
sients.

FIG. 10. Streamfunction in nondimensional units in an integration
of the de Swart (1988, 1989) model at typical instants when the flow
is (a) zonal, with x1 5 4.0, and (b) blocked, with x1 5 21.7. (One
nondimensional unit is 1.1 3 106 m2 s21.) The topographic height in
kilometers is also shown (dotted contours).

x1 is sufficient to distinguish between these regimes,
which arguably correspond to zonal and blocked flow,
respectively, though the regime residence times in the
wavenumber 2 model are not realistic. Typical flow
structures for the two regimes are shown in Fig. 10.

b. The two-hemisphere model

The two midlatitude systems are coupled, in the qua-
sigeostrophic approximation, because of the exchange
of Rossby waves through the Tropics. However, a me-
ridionally propagating Rossby wave only penetrates
the Tropics in longitudinal bands where the average
zonal winds u are westerly (Webster and Holton 1982),
as illustrated in Fig. 7 (for a numerical model more
highly resolved than the models to be considered here).
More generally, a propagating wave with zonal phase
speed cx ± 0 is either reflected or absorbed when it
reaches a critical line where u 2 cx 5 0. The critical
line is thus defined by a value of u , giving the requisite
‘‘Doppler shift,’’ which is different for different wave
modes. The existence of the critical line, ignoring the
mode dependence, is the reason for the boundary con-
dition (10a) on the tropical side of the channel. As
illustrated in Fig. 8, the westerly ducts that break the
tropical boundary are regions typically no more than
458 in longitudinal extent that form intermittently over
the Atlantic and Pacific Oceans during boreal winters.
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To the extent that the boundary conditions in (10) ac-
curately represent the physical effects of the tropical
easterly barrier, the same boundary conditions with
holes can be used to construct a model of the two
midlatitude systems, coupled through the westerly
ducts.

Duane (1997) formulated the coupling between the
two midlatitude systems that is engendered by the trans-
mission of Rossby waves through the westerly ducts,
by neglecting the meridional extent of the region of
tropical easterlies, taking this region to be a line at the
equator, and also assuming that the two midlatitude sys-
tems lay on a single b plane. The former assumption
will be relaxed in section 3c, where we consider trans-
mission across an extended tropical region. The latter
assumption, which corresponds to f varying linearly
with latitude everywhere, would be exact on a planet
with a shape that is not spherical but that is also not
terribly unrealistic.

The effect of the opposite hemisphere is that of a
boundary forcing in the longitudinal range correspond-
ing to the tropical westerly ducts. The forcing is given
by replacing the boundary condition of zero meridional
wind by the condition that meridional winds match

across the tropical boundary, that is, that y(x, 01) 5
y(x, 02) in the duct regions or equivalently that ]C/]x
matches across the boundary in these regions.

To isolate the effects of the boundary forcing in a
linear equation that can be solved by conventional meth-
ods, the streamfunction C is expressed as the sum of
two parts: C 5 C0 1 CB. The boundary-forced, or
‘‘diffracted,’’ part CB is a solution of the linearized
vorticity equation:

2](¹ C )B 21 J(C , f ) 1 m¹ C 5 0, (15)B B]t

with matching boundary conditions, as described above,
in the duct regions. The remaining free part C0 satisfies
the Charney–Devore boundary conditions in (10) and
is such that the total streamfunction C satisfies the full
vorticity equation (8). The diffracted streamfunction CB

is posited to satisfy a specific inhomogeneous condition
on the tropical boundary: in the duct regions, CB is set
equal to the sum of the southward-propagating part of
the total flow north of the boundary and the northward-
propagating part of the total flow south of the boundary.
That is,

0 outside ducts
N SC (x, 0, t) 5 C (x, 0, t) 5 [ D(x, t), (16)B B N ↓ S ↑T(t) ĉ (t)F (x, 0) 1 ĉ (t)F (x, 0) @ ducts5 O j j j j

j

where T is a parametric transmission coefficient, perhaps
time dependent, and the coefficients and are theN Sĉ ĉj j

coefficients in the Charney–Devore/de Swart spectral
truncation of the full streamfunction in either hemi-
sphere: CN,S 5 Sj . The modes are chosenN,S N,S N,Sĉ F Fj j j

to have symmetry properties such that the single-hemi-
sphere equations derived from (14) will be the same on
both sides of the equator. The northward- and south-
ward-propagating parts of the Rossby modes F j 5

2 sin(j2y/b), |j1|, j2 . 0 are given byij x1eÏ
↑ ↓F 5 F 1 F (17a)j j j

i y
↑F 5 6 exp i j x 7 i j (17b)j 1 21 2bÏ2

i y
↓F 5 7 exp i j x 6 i j , (17c)j 1 21 2bÏ2

where the upper (lower) signs apply when j1 . 0, vj ,
0 (j1 , 0, v j . 0). The zonal flow modes 5 2F Ï0,j2

cos(j2y/b), with vj 5 0, have no northward- or south-
ward-propagating parts. Details of the remaining bound-
ary conditions and north–south symmetries can be found

in Duane (1997). Because of our assumptions regarding
the shapes of the ducts and the background wind field,
however, the sizes of the ducts and the transmission
coefficient T are not to be taken literally and are instead
intended to parametrize the various effects, many of
which we have neglected, that determine the strength
and form of the physical coupling. The representation
(16) of the physical coupling is illustrated schematically
in Fig. 11. The various streamfunctions and spectral
expansion coefficients that have been used in the fore-
going or will enter the derivation are listed in Table 6.

Since CB satisfies the linear equation (15), it can be
expressed as an integral, over the boundary and over
history, of the boundary values multiplied by a bound-
ary Green’s function Gb:

bC (r, t) 5 D(x , t )G (r, t | x , t ) dx dt , (18)B E 0 0 0 0 0 0

t ,t0

where r 5 (x, y), r0 5 (x0, y0), and we have introduced
the single streamfunction CB(x, y, t) [ (x, y, t) 5NCB

(x, 2y, t). A spectral form for the boundary Green’sSCB

function is derived in Duane (1997):
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FIG. 11. Schematic diagram of the two-hemisphere model. The
tropical easterly barrier is assumed infinitely thin, and both hemi-
spheres are taken to lie on a single b plane. The two midlatitude
systems are boundary-forced by the outward-propagating com-
ponents of the meridionally standing wave modes in each hemi-
sphere.

TABLE 6. Streamfunctions and spectral expansion coefficients
used in the derivation of the low-order models. Coefficients are for
expansions in the complex basis functions Fj except where indi-
cated. Quantities for the two-hemisphere model are listed without
the superscripts N and S used in the text, which indicate the cor-
responding quantities in the Northern and Southern Hemispheres,
respectively. The subscript j is shorthand for the pair of indices (j1,
j2) throughout.

Streamfunction
Spectral

coefficients

Basis functions
Fj(x, y) complex eigenfunction of ¹2 with

eigenvalue 2lj

Fj(x, y) complex conjugate of eigenfunc-
tion Fj

Yi(x, y) real eigenfunction of ¹2 defined in
Table 5 for i 5 1, . . . , 10

Single–hemisphere model

C(x, y, t) 5
cj(t) (com-

plex basis)
xi(t)

(real basis)
6 solution of barotropic vorticity

equation with homogeneous
boundary conditions

Coupled–hemisphere model
CB(x, y, t) zj(t) solution of linearized barotropic

vorticity equation with boundary
forcing cB(x, 0, t) 5 D(x, t)

C(x, y, t) j(t)ĉ solution of barotropic vorticity
equation with boundary forcing

C0(x, y, t) cj(t) c 2 cB (satisfies homogeneous
boundary conditions)

F (x, y)↑
j northward-propagating part of ei-

genmode Fj

F (x, y)↓
j southward-propagating part of ei-

genmode Fj

C*(y, t) c (t)*
j zonal flow driven by equator-to-

pole temperature gradient (in
model with annual cycle, the co-
efficients vary sinusoidally with
average values cj and variation
amplitude dj)

FIG. 12. Schematic representation of the structure of the truncated
28-component model of the coupled hemispheres. Zonal flow modes
are uncoupled, while each Rossby mode is coupled to all Rossby
modes in the opposite hemisphere at all past times.

bG (r, t | x , t )0 0

]F jv (x , 0, t )F (r)j 0 0 j]y1
5 2 iu(t 2 t ) O0 22p b lj ±0 j1

3 exp[(2iv 2 m)(t 2 t )], (19)j 0

where, as before, vj 5 2j1b/lj, l j 5 1 /b are the2 2j j1 2

eigenvalues of ¹2Fj 5 2ljF j, and u is the unit step
function.

Note that if we substitute (19) in the integral in (18)
we get a sum of eigenmodes for homogeneous boundary
conditions (multiplied by overlap integrals) as a pur-
ported solution to the linearized equation with inho-
mogeneous boundary conditions. Our method (Morse
and Feshbach 1953) will give errors in a boundary layer
near the ducts, which will narrow as we retain an in-
creasing number of terms in the expansion.

All streamfunctions are expanded in eigenmodes:

C 5 z (t)F (20)OB j j
j ±01

N,S N,S N,SC 5 ĉ F (21a)O j j
j

N,S N,S N,SC 5 c F . (21b)O0 j j
j

The sum in (20) is also seen to be over Rossby modes
only by substitution of (19) in (18). The structure of
the two-hemisphere model, schematized in Fig. 12, re-
sembles the structure of low-order systems that have
previously been reported to exhibit synchronized chaos
(Pecora and Carroll 1990; Duane 1997) in that some
but not all of the dynamical variables are coupled. The
physical reason for the decoupling of the zonal flow
modes defined in (11a) is that the zonal flow vanishes
at the interface, that is, u 5 2]F j /]y 5 0 for these
modes at y 5 0, so they do not contribute to the spectral
expansion of Gb in (19). Since the Rossby modes are
odd in y, CB(x, 2y, t) 5 2CB(x, y, t), so the decom-

position of the total streamfunction in the two hemi-
spheres becomes

N NC (x, y, t) 5 C (x, y, t) 1 C (x, y, t)0 B

S SC (x, y, t) 5 C (x, y, t) 2 C (x, y, t), (22)0 B
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or, in terms of the time-dependent expansion coeffi-
cients,

N Nĉ 5 c 1 z (23a)j j j

S Sĉ 5 c 2 z . (23b)j j j

The boundary forcing in (16) is seen to be D(x) 5
T (x, 0)( 2 ) at the longitudes of the ducts↑ N SS F ĉ ĉk ,k k k k1 2

(with time dependence suppressed), where we have
noted from (17) that (x, 0) 5 2 (x, 0). The co-↑ ↓F Fk k

efficients of the modes in CB are then found from (18)
and (19):

t N S2iv T(ĉ (t ) 2 ĉ (t ))1 ] j k 0 k 0(2iv 2m)(t2t ) ↑j 0z (t) 5 e F (x, 0) F (x, 0) dx dt , (24)Oj E E j k 02 1 22p b ]y lk ,k j1 22` x∈ducts

or, differentiating,

v Ti N Sż 5 (2iv 2 m)z 2 i W (ĉ 2 ĉ ), (25)Oj j j jk k k2l 2p b k ,kj 1 2

where we have introduced notation for the overlap in-
tegrals:

]
↑W [ F (x, 0) F (x, 0) dx. (26)jk E j k1 2]yx∈ducts

By subtracting (15) from (8), it is seen that first-
order differential equations for the coefficients of the
modes in the two-hemisphere model can be obtained
by substituting for c j in all terms of the single-ĉ j

hemisphere equations (14) except the time-derivative,
b-effect, and dissipation (;m) terms, and then includ-
ing (25). Thus the equations of the two-hemisphere
model are

1
N N N N Nl ċ 5 c (l 2 l )ĉ ĉ 1 g c ĉ hO Oj j j lm l m l m jlm l m2 l ,m∈S l,m∈SK K

N N N*1 b c 2 ml (c 2 c ) (27a)O j l l j j j
l∈SK

1
S S S S Sl ċ 5 c (l 2 l )ĉ ĉ 1 g c ĉ hO Oj j j lm l m l m jlm l m2 l ,m∈S l,m∈SK K

S S S*1 b c 2 ml (c 2 c ) (27b)O j l l j j j
l∈SK

v Tj N Sż 5 (2iv 2 m)z 2 i W (ĉ 2 ĉ ),Oj j j jk k k2l 2p b k∈Sj K

(27c)

where we have also truncated to wavenumber K in both
the meridional and zonal dimensions by restricting the
summations to the sets SK [ {(j1, j2) | 2K # j1 # K, 1
# j2 # K}. For the case K 5 2, the system in (27a)–
(27c) was reduced to a set of 28 equations for real
dynamical variables in Duane (1997).

The dynamical relationship between the boundary-
forced streamfunction CB and the total streamfunction
C in the model (27a)–(27c) engenders dissipative cou-
pling. That is, the magnitudes of the spectral coeffi-

cients z j for CB approach quantities proportional to the
differences between corresponding spectral coeffi-
cients and for the total streamfunction C in theN Sĉ ĉk k

two hemispheres, according to (27c). But according to
(23), the contribution of the z j to the should thenĉ j

tend to equalize the total streamfunctions in the two
hemispheres. An important approximation in the con-
struction of the two-hemisphere model was to neglect
even modes (in y) of the whole system, corresponding
to half-integer values of j 2 with a phase shift, which
would satisfy the boundary conditions in (10) only at
y 5 pb and y 5 2pb. Such half-integer modes would
have to be considered if the westerly ducts spanned
the entire equator, for instance. These modes can be
ignored in our model, however, if we assume that the
forcing terms CN* and CS* in (27a) and (27b), which
give the background zonal winds in the two hemi-
spheres due to thermal forcing, do not include such
modes. Then it can be verified that no wave-triad in-
teractions [given by the terms in (27a) and (27b) that
are bilinear in c] will generate them since integer val-
ues of j 2 yield only integer sums and differences. It
appears to us that the assumed form of the forcing (11),
(13), which preserves the structure of the single-hemi-
sphere models, is sufficiently general for the synchro-
nization study since forcing terms possessing any sym-
metry across the equator, odd or even, can still be
represented with the modes we have used.

c. Coupling of the hemispheres across an extended
tropical region

If we regard the single-hemisphere model formu-
lated in section 4a as describing the midlatitude region
proper, so that the tropical easterly barrier has a finite
latitudinal extent, then the Rossby waves linking the
two hemispheres will be attenuated and phase-shifted
as they propagate through the westerly ducts. The
phase shift of a wave mode of the form (11b) through
a duct of path length P is Pj 2 /b. The attenuation of the
mode over the same distance, arising from the friction
term m¹ 2C in the barotropic vorticity equation (8), is
exp(2Pml j /cyj), where cy is the meridional phase speed
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of the wave. From (11b) and (12), this phase speed is
cy [ v /ky 5 (bj1 /l j)/(j 2 /b). The phase shift and atten-
uation of the Rossby modes affect the boundary forcing
of each midlatitude system by the opposite hemisphere,
but the forcing due to the outgoing waves is unchanged.

Furthermore, the forcing due to incoming waves at time
t is determined by the values of the wave modes on
the boundary of the opposite midlatitude region (before
phase shifting and attenuation) at time t 2 P/cy . There-
fore, (16) is replaced by

0 outside ducts
N NC (x, 0,t) 5 [ D (x, t)2B Pl j Pml j P jj 2 j 2 2N ↓ S ↑T(t) c (t)F (x, 0) 1 c t 2 exp 2 1 i F (x, 0) @ ducts5 O j j j j1 2 1 2[ ]bj b bj b bj 1 1

(28a)

0 outside ducts
S SC (x, 0,t) 5 [ D (x, t).2B Pl j Pml j P jj 2 j 2 2S ↑ N ↓T(t) c (t)F (x, 0) 1 c t 2 exp 2 2 i F (x, 0) @ ducts5 O j j j j1 2 1 2[ ]bj b bj b bj 1 1

(28b)

While the boundary forcing in (16) engenders trans-
mission and reflection of waves at the boundary, the
form (28) models absorption as well.

Since the two hemispheres are no longer forced by
the same quantity D(x, t) as in (16), we no longer have

(x, y, t) 5 (x, 2y, t), so and must beN S N SC C C CB B B B

regarded as separate dynamical variables. It follows
that the low-order truncated models in the case of an
extended tropical region will also have higher dimen-
sion than their counterparts in the previous section.
Specifically, we must introduce distinct variables Nz j

and for the two hemispheres, respectively, by anal-Sz j

ogy with (20). The reasoning that led to (27) now leads

to the following system of ordinary differential equa-
tions with delays:

1
N N N N Nl ċ 5 c (l 2 l )ĉ ĉ 1 g c ĉ hO Oj j j lm l m l m jlm l m2 l ,m∈S l,m∈SK K

N N N*1 b c 2 ml (c 2 c ) (29a)O j l l j j j
l∈SK

1
S S S S Sl ċ 5 c (l 2 l )ĉ ĉ 1 g c ĉ hO Oj j j lm l m l m jlm l m2 l ,m∈S l,m∈SK K

S S S*1 b c 2 ml (c 2 c ) (29b)O j l l j j j
l∈SK

2v T Pml k Pk Pl kj k 2 2 k 2N N N Sż 5 (2iv 2 m)z 2 i W ĉ (t) 2 exp 2 1 i ĉ t 2 (29c)Oj j j jk k k2 1 2 1 2[ ]l 2p b bk b b bk bk∈Sj 1 1K

2v T Pml k Pk Pl kj k 2 2 k 2S S S Nż 5 (2iv 2 m)z 2 i W ĉ (t) 2 exp 2 2 i ĉ t 2 (29d)Oj j j jk k k2 1 2 1 2[ ]l 2p b bk b b bk bk∈Sj 1 1K

where time arguments have been suppressed, except
when involving delays, and

N N Nĉ 5 c 1 z (30a)j j j

S S Sĉ 5 c 1 z . (30b)j j j

For a truncation to K 5 2, the system (29) consists of
36 real dynamical variables.

A difference between the two-hemisphere system

with no explicit Tropics, (27), and the system with an
extended Tropics is that the former system of equations
is satisfied by solutions cj of the single-hemisphere sys-
tem (14). That is, if cj solves (14), then 5 5 cj,N Sĉ ĉj j

zj 5 0 solves (27), for symmetrical topography h and
symmetrical thermal forcing C*. The equations for the
two-hemisphere system with an extended Tropics,
(29a)–(29d), on the other hand, are not satisfied by the
single-hemisphere solutions c j. Nevertheless, (29a)–
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TABLE 7. Joint probability matrices as in Table 1 but for an inte-
gration of the two-hemisphere model (27a)–(27c) truncated to K 5
2 over a period of 5 3 104 nondimensional time units, with trans-
mission coefficient T 5 1 and other parameters as in Fig. 13, where
the regimes are zonal flow and blocked flow, defined by x1 . 3 and
x1 , 3, respectively, in either hemisphere. Error bars at the 2s level
were computed from five Monte Carlo simulations. The p value was
computed by assuming a decorrelation time of 60 nondimensional
time units.

(a) (b)
P

N zonal N blocked

Pind

N zonal N blocked

S zonal
S blocked

0.59
0.18

0.15
0.08

C 5 0.12 6 0.03

0.56
0.20

0.17
0.06

p 5 0.001

FIG. 13. The interhemispheric regime correlation C as defined in
(7), which quantifies the tendency for blocked states to co-occur, for
varying interhemispheric transmission coefficient T, as defined in
(16). Correlations are shown for the model (27a)–(27c) with sym-
metric topography, hN 5 hS (solid line), and with more topography
in the Northern Hemisphere, hN 5 1.2, hS 5 0.85 (dashed line). The
value C was computed from simulations over 5 3 104 nondimensional
time units. The coefficients Wjk in the equations (27a)–(27c) for the
two-hemisphere system were chosen according to (26), for two ducts
of width p/4 (radians), separated by p/2, then reducing the nondi-
agonal (j ± k) coefficients by half to allow for averaging over duct
positions. Other parameters are as in Fig. 9, except that dimensional
f 0, b have their values at the equator and the dimensional values of
the background winds range to 290 m s21. Error bars at the 2-s level
were computed from sets of five Monte Carlo simulations. The thin
line is the minimum C that would be significant at the 95% level
according to chi-squared analysis, assuming a decorrelation time of
60 nondimensional time units.

(29d) possess symmetrical solutions 5 . It can beN Sĉ ĉj j

verified that these symmetrical solutions are just the
solutions of the single-hemisphere system, modified to
include some absorption by the tropical boundary at the
longitudes of the ducts and where the reflecting bound-
ary at the Tropics is moved to a receded position at
these longitudes. Coupling two such single-hemisphere
models, so modified, is another way to derive the system
(29a)–(29d).

5. Interhemispheric correlations in the model

Regime correlations in the model can be described in
the same manner as they were for observed data in
section 3. We now base our definition of blocking on
the apparent regime structure of the trajectory in Fig.
9. We call subsystem N (S) zonal at any time t if and
only if (t) . 3 ( (t) . 3). Otherwise we call sub-N Sx x1 1

system N (S) blocked at time t. The separate identity of
the seldom occupied ‘‘transitional’’ regime described in
deSwart (1988, 1989) is ignored here. The joint prob-
abilities Pi,j for a simulation of the model, and the cor-
responding probability values in the case where theindPi,j

two subsystems individually have the same statistics but
are assumed independent, defined as in (6), are given
in Table 7. As with the observed data, the diagonal
elements of the matrix P are larger than those of the
matrix Pind, while the off-diagonal elements are smaller,
indicating correlation. We plot the standard measure of
this correlation C, which was defined in (7), as a function
of the transmission coefficient T, assumed constant in
time, in Fig. 13. The simulations used to compute C
were each conducted over a period equal to more than
800 decorrelation intervals, if we assume a maximal
decorrelation time of about 60 nondimensional time
units, corresponding to an average of regime-residence
times reported by de Swart (1989). (This is much longer
than the decorrelation time in the real atmosphere.) The
correlations exceed the minimum correlation, shown in
the figure, which would be significant at the 95% level
according to chi-squared analysis. Typical error bars
based on Monte Carlo estimates are also shown.

While T 5 1 in Fig. 13 corresponds to a naive as-
sumption about the nature of the ducts, as depicted in
Fig. 11, and one might expect smaller values of T in
the realistic case that Rossby waves are attenuated, there
is also evidence that realistically shaped ducts might
serve to focus Rossby waves (Webster and Chang 1998),
possibly giving an effective T . 1. Additionally, there
is the possibility of ‘‘tunneling’’ when the easterly bar-
rier is narrow or when the easterly wind speeds are low,
perhaps also giving an effective T . 1. The coupling
matrix Wjk used in the simulations was first computed
for two ducts of width p/4 and separated by a distance
of p/2 in longitude. The factors T and Wjk, however,
should incorporate the effects of ducts of changing
shape, size, position, and westerly wind speeds. Also,
according to the Doppler-shift analysis in section 4b,
‘‘ducts’’ that transmit different modes have different
boundaries. The values of the diagonal overlap integrals
Wjj, given by (26), are less affected by such changes,
for constant total duct width, than the nondiagonal el-
ements Wjk (j ± k), which vanish when averaged over
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FIG. 14. Streamfunction and topographic height as in Fig. 10 but
for the two-hemisphere model truncated to wavenumber 2, at an
instant when both hemispheres are blocked. [A nondimensional
streamfunction unit in the two-hemisphere model (27a)–(27c) is 2.2
3 106 m2 s21.] Parameters are as in Fig. 13, with T 5 1.

FIG. 15. Time series of differences between the trajectories of the
two hemispheres in the coupled de Swart system [see (27a)–(27c)]
with nonphysical parameters, represented by the difference 2N Sx x1 1

between the coefficients of the gravest zonal flow modes in the two
hemispheres, as plotted in Fig. 9. Parameters are as in Fig. 13 with
T 5 1, except that the diagonal coefficients Wjk, j 5 k are increased
by a factor of 38.all possible duct configurations. Therefore, we em-

ployed the ad hoc device of reducing the values of the
nondiagonal Wjk by half in conducting the integrations.
Individual hemisphere parameters are as given by de
Swart (1988, 1989).

A typical flow pattern in which both hemispheres are
blocked is shown in Fig. 14. Blocks tend to form at
different longitudes because of the topographic config-
uration, which enters the dynamics with opposite signs
of f in the two hemispheres.

In Duane (1997), the correlations between blocking
events in the two hemispheres were described as a
manifestation of partially synchronized chaos. That is,
it was shown in Duane (1997) that for very different,
nonphysical values of the coupling parameters, the cha-
otic systems representing the two hemispheres would
synchronize completely, that is, (t) 5 (t), for allN Sc cj j

sufficiently large t, regardless of initial conditions. Ap-
parently, the Rossby modes capture the ‘‘chaotic’’ be-
havior of each hemispheric system, so that coupling
these modes is sufficient to drive the uncoupled zonal
flow modes into synchrony. A bifurcation occurs as
parameters begin to approach physical values, resulting
in bursts of desynchronization that interrupt the syn-
chronized phase at irregular intervals (Fig. 15), as is
typical in other instances of synchronized chaos (Af-
raimovich et al. 1986; Venkataramani et al. 1996; Ash-
win et al. 1994). Duane (1997) showed that the cor-
relations detected at physical values of the parameters
of T and Wjk can be regarded as a vestige of this syn-
chronizing behavior and that such correlations are

common in paired dynamical systems with mutually
time-lagged coupling in a region of parameter space
where the time lag associated with the coupling is the
same as the intrinsic timescale of each component sys-
tem.1 Here, we show that these correlations are main-
tained even if we abandon some of the unrealistic ide-
alizations used in Duane (1997).

Figure 16 shows the regime correlation for the model
with an extended tropical region for varying duct path-
length P in (29) expressed as a fraction of the latitudinal
extent of each midlatitude region. It is seen that signif-
icant correlations persist for realistic duct lengths (com-
pared, for instance, with the tropical barrier illustrated in
Fig. 7.) This is expected, in view of the comments at the
end of section 4d regarding the reinterpretation of the
extended Tropics model. The regime correlations can be
regarded as arising from two Charney–Devore/de Swart
type models coupled through a common boundary at the

1 Kocarev et al. (1997) recently demonstrated synchronization in
two one-dimensional systems, coupled at 32 evenly spaced junction
points. This scheme implies that the time needed for a signal to
propagate across an individual system is 32 times larger than the time
needed for the coupling signal to reach any point of either system.
Interestingly, this ratio of timescales is comparable to what Duane
(1997) found was necessary to achieve synchronization in time-lag-
coupled Lorenz systems and in the nonphysically coupled two-hemi-
sphere model whose behavior is described in Fig. 15.
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FIG. 16. The interhemispheric regime correlation C as in Fig. 13
when Rossby wave signals linking the two midlatitude systems are
phase-shifted and attenuated over a path length P in an extended
tropical region, according to the modified two-hemisphere equations
(29a)–(29d), with T 5 0.75. The path length on the horizontal axis
is expressed as a fraction P/pb of midlatitude channel width. Other
parameters are as in Fig. 13.

FIG. 17. The interhemispheric regime correlation C as in Fig. 13
when topographic features in the Southern Hemisphere are shifted
longitudinally by a, relative to the positions in Fig. 14. [The topog-
raphy in each hemisphere is defined in (31).] The parameter T 5 1
and other parameters are as in Fig. 13. Here, the two thin lines rep-
resent the minimum significant correlation and the minimum signif-
icant anticorrelation.

duct longitudes, as in the model with P 5 0, but with a
tropical boundary for each midlatitude model that has a
modified shape and reflection properties. If one believes
that the original Charney–Devore model captured the
qualitative features of the circulation in the midlatitudes,
despite the idealizations in the boundary conditions, it is
not surprising that the correlations observed in a coupled
pair of such models should also be independent of these
idealizations.

In formulating the generalized coupling (28) for the
model with an extended Tropics, we chose to separate
the effects of phase shift and attenuation from effects
on either side of the equator associated with the specific
shape of the ducts, which might ostensibly require Ross-
by waves to turn corners, for example. Ignoring such
effects was consistent with our decision to ignore the
detailed characteristics of the ducts, for example, due
to varying background wind speeds in the P 5 0 model.
In general, the effect of finite duct width on either side
of the equator will be to reduce the parametric trans-
mission coefficient T by factors based on the geometry
(T 5 0.75 was used in Fig. 16), with consequences for
the regime correlations that can be gleaned from Fig.
13.

Next, we show the dependence of the correlations on
the relative positions of the topographic features in the
two hemispheres. Figure 17 plots the regime correlation
as a function of the longitudinal shift a in Southern
Hemisphere topography, where the topography used to
construct the two-hemisphere model (27) is

y
Nh (x, y) 5 cos(x) sin (31a)1 2b

y
Sh (x, y) 5 cos(x 1 a) sin , (31b)1 2b

which is then spectrally expanded according to (13).
[The dimensional topography, as shown in Fig. 14,
changes sign in the Southern Hemisphere so as to main-
tain the sign of the constant g multiplying the term for
topographic b effect in (8).] In Duane (1997), it was
shown that the correlations were tolerant of some asym-
metry in the magnitude of the topography, though this
asymmetry caused the two hemispheres individually to
behave differently. Significant correlations are shown in
Fig. 13 (dashed line) for a model with enough topo-
graphic asymmetry as to roughly double blocking fre-
quency in one hemisphere and halve it in the other. In
the case of relative orientation of topographic features,
on the other hand, the behavior of each hemisphere
considered singly should be completely unchanged be-
cause of the zonal symmetry of the barotropic vorticity
equation (8). Yet the correlation in Fig. 17 is seen to
vary systematically with a, becoming negative over as
large a range of a as that for which it is positive.

A physical explanation of the anticorrelation between
blocked states in the two hemispheres, for a 5 p, is
perhaps the following: in the de Swart model, the
blocked flow regime is characterized by wavenumber 2
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FIG. 18. Single-hemisphere trajectory as in Fig. 9 but with an an-
nual cycle in thermal forcing given by (33a).

blocks in a fixed position with respect to the ‘‘topo-
graphic’’ features (corresponding to continents in the
original theory) in a given hemisphere. For a 5 0, these
block positions are the same as those implied by analytic
continuation of the streamfunction in the opposite hemi-
sphere, when that hemisphere is blocked. However, for
a 5 p, the synchronization tendency, when the opposite
hemisphere is blocked, would cause blocks to form at
positions opposite in longitude to those favored by the
hemisphere’s intrinsic dynamics. In this situation the
compromise chosen is zonal flow in the given hemi-
sphere, when the opposite hemisphere is blocked, hence
anticorrelation.

One might want to determine an effective value of a
for various theories of the forcing mechanism in the
Southern Hemisphere, to see whether any of these the-
ories are favored by the positive interhemispheric cor-
relations actually observed. Coughlan (1983), for in-
stance, noting the scarcity of topographic features in the
Southern Hemisphere, has suggested that longitudinal
temperature variation (ultimately due to the shape of the
Antarctic continent) may play a role in forcing blocking
behavior analogous to that of topography in the North-
ern Hemisphere. To compare theories of the forcing
mechanism with our model, it would be necessary to
reconcile the model structure with the observed statistics
indicating two blocking centers in the Northern Hemi-
sphere as compared to three in the Southern Hemi-
sphere, probably due to corresponding differences in
effective topographic wavenumber between the two
hemispheres. Since the results for hN ± hS shown in
Fig. 13 (dashed line) may be regarded as evidence that
the correlations are robust against asymmetry in the
magnitude of any given spectral component of the glob-
al ‘‘topography,’’ it is suggested that the modeled cor-
relations will also be consistent with different numbers
of blocking centers.

The greatest asymmetry between the hemispheres (at
a given instant of time) arises from the annual cycle,
since the thermal forcing term C* in the barotropic
vorticity equation (8), essentially the geostrophic wind,
varies with the equator-to-pole temperature difference.
Additionally, the westerly ducts are only open during
boreal winter, as shown in Fig.(8). We model the open-
ing and closing of the westerly ducts with a time-de-
pendent transmission coefficient:

1
T(t) 5 T (sin(n t) 1 |sin(n t)|), (32)02

where n 5 2p/(1 year) 5 0.1991 (in nondimensional
units) and T0 is an average value. The value T as given
by (32) vanishes during half the year and varies sinu-
soidally during the other half. The annual cycle in ther-
mal forcing is modeled by introducing a time depen-
dence in the forcing parameters cN,S* in (27):

N N* *c 5 c [1 1 d sin(n t)] (33a)j j j

S S* *c 5 c [1 2 d sin(n t)], (33b)j j j

where the dj are constants that specify the asymmetry
in each component of the forcing streamfunction. Ac*j
typical single-hemisphere trajectory with an annual cy-
cle (33) in thermal forcing is depicted in Fig. 18. With
the values d1 5 0.15 and d2 5 0.5 chosen so that each
hemisphere spends a reasonable amount of time in each
regime over the entire cycle (though with unrealistic
annual variations in the background winds), regime cor-
relations are plotted in Fig. 19 for varying average trans-
mission coefficient T0. Correlation values are plotted
for both the full year and for boreal winters only (0 ,
nt , p mod2p) when T . 0 in (32). Also shown in
the figure are correlations for a control run in which the
ducts open and close according to (32), but with no
annual cycle in thermal forcing [i.e., dj 5 0 in (33)].
There are two principal conclusions to be drawn from
the figure. First, the correlations (long-dashed line) for
the model with an annual cycle in the ducts, but not in
the thermal forcing, are comparable to correlations (dot-
ted line) in the model with no annual cycle. Thus, partial
synchronicity can be regained within one winter season
after a period of decoupling. Synchronization with only
occasional coupling has indeed been reported in another
context (Morgul and Feki 1997). Second, the boreal
winter correlations are seen to be enhanced slightly by
the cycle in thermal forcing. The correlations (solid line)
with an annual cycle in both ducts and forcing are higher
almost everywhere than the correlations (dotted line)
with no annual cycle, by an average of about one stan-
dard deviation in the latter (using the error bars shown
in Fig. 13). Considered collectively, these differences
appear to be significant.

While synchronized chaos has been reported in both
directionally (Pecora and Carroll 1990; Rulkov et al.
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FIG. 19. The interhemispheric regime correlation C vs parametric
transmission coefficient as in Fig. 13 but with (a) an annual cycle in
thermal forcing, given by (33), and an annual cycle in the ducts,
given by (32), using statistics for boreal winters only (solid line); (b)
an annual cycle in the ducts and steady forcing for boreal winters
(long-dashed line); (c) no annual cycle, as in Fig. 13 (dotted line);
(d) an annual cycle in both forcing and ducts, using full-year statistics
(short-dashed line). The horizontal axis in (a) and (c) represents the
average transmission coefficient T0 in (32).

FIG. 20. Lagged correlation values C, as in Fig. 6 but for a simulation
of the two-hemisphere model with an annual cycle given by (32) and
(33), over 5 3 104 nondimensional time units, considering only boreal
winter periods. The horizontal axis specifies Northern Hemisphere lead
in nondimensional time units, so that the range of dimensional lead
times plotted is the same as that in Fig. 6. (Negative values represent
Southern Hemisphere lead.) The thin line denotes the minimum sig-
nificant correlation, and other parameters are as in Fig. 13.

1995) and bidirectionally (Afraimovich et al. 1986; Fu-
jisaka and Yamada 1983) coupled systems, the case of
directional coupling seems more tractable analytically
and appears to have been more widely studied for non-
identical systems (Rulkov et al. 1995). It is not known
what can be said generally about the extent to which
directionality actually aids synchronization or partial syn-
chronization, but directionality does appear to play such
a role here. That is, it is suggested that forcing one of
two coupled systems more than the other tends to place
that system in the role of the driver. The combined effects
of the annual cycles in thermal forcing and in the ducts
themselves lead to dominance by the Northern Hemi-
sphere, which is more strongly forced by the higher equa-
tor-to-pole temperature gradient in boreal winter, when
the ducts are open. The directional effect is evident in
the plot of lagged correlations in Fig. 20 (though the
largest correlations are simultaneous) and perhaps also
explains the slight asymmetry with respect to time or-
dering in the lagged correlations in observations (Fig. 6).

If one believes that the truncations to wavenumber 2
capture the dynamics of each hemisphere, it is certainly
plausible that the interhemispheric correlations would per-
sist at higher orders of truncation since higher modes in
a given hemisphere should have no greater effect on the
opposite hemisphere than they have locally. This hypoth-
esis is also supported by the falloff of the factors vj/lj in
the coupling terms in (27) with increasing wavenumber

and by the falloff of the nondiagonal coupling coefficients
Wjk ( j ± k) defined in (26) for fixed duct size as argued
in detail in Duane (1997). Furthermore, synchronized cha-
os is known to be robust against significant noise in the
coupling channel (Brown et al. 1994a,b).

Nevertheless, for physical authenticity, we examine in-
terhemispheric correlations in a K 5 3 truncation in (27)
of the model constructed from the barotropic vorticity
equation (8). The illustration in Fig. 7 is actually for a
planetary wavenumber 3 initial disturbance. A trajectory
of the single-hemisphere, wavenumber 3 model, for a
particular choice of forcing parameters, is shown in Fig.
21. It differs from the wavenumber 2 trajectories, such
as the one in Fig. 9, principally in that the regimes in
the K 5 3 case are less distinct, with a shorter regime
residence time. Comparing to a typical regime history
for observed data in the Northern Hemisphere, as shown
in Fig. 22 for the NCEP–NCAR dataset, it is seen that
regime-transition rates in reality lie somewhere between
the wavenumber 2 and wavenumber 3 cases presented
here and are closer to the latter. A blocked flow config-
uration for the two-hemisphere, wavenumber 3 model is
depicted in Fig. 23. Correlations are plotted in Fig. 24
for a number of runs of the wavenumber 3 model with
different initial conditions and different values of T. (An
arbitrary threshold value x1 5 3 was used to arbitrarily
define regimes that may or may not correspond to dy-
namical regimes. In any case, the correlations were found
to be rather insensitive to the choice of threshold value.)
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FIG. 21. Single-hemisphere trajectory as in Fig. 9 but for a model
that includes modes up to wavenumber 3, i.e., for (14) with the
summations over |j1|, j2 # 3. Parameters are as in Fig. 9, except for
the forcing terms 5 16, 5 215, where [ /b.x* x* x* c*1 11 11 03

FIG. 23. Streamfunction and topographic height as in Fig. 14 but
for a wavenumber 3 truncation of the two-hemisphere model at an
instant when both hemispheres are blocked. Parameters are as in Fig.
14, except for increased forcing as in Fig. 21.

FIG. 24. The interhemispheric regime correlation C as in Fig. 13 for
various runs of the wave number K 5 3 model as depicted in Fig. 21,
for simulations over 5000 nondimensional time units, but for different
randomly chosen initial conditions and the indicated values of T.

FIG. 22. Regime history of the Northern Hemisphere in NCEP–
NCAR data, over a time interval equal to that used in the model run
in Fig. 21. The blocking index is defined as maxl,D {min[GHG1, (210
2 GHG2)]}, which is positive if and only if there is blocking some-
where in the hemisphere, according to the criterion in (4). [GHG1
and GHG2 are defined in (1).]

The values of C are not directly comparable to the wave-
number 2 values since the single-hemisphere forcing pa-
rameters in the two different truncations were chosen
differently. The data in Fig. 24 considered as a whole,
however, indicate that the interhemispheric correlations
in the wavenumber 3 model are significant.

6. Concluding remarks

In summary, we have detected correlations between
blocking events in the two hemispheres in observed data
and have described a model in which blocking is the
result of deterministic low-order chaos in each hemi-
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sphere, and hence is unpredictable, but still tends to occur
simultaneously in the two hemispheres when they are
weakly coupled. Both the observed and modeled corre-
lations are small. For convenience, we have chosen to
demonstrate interhemispheric correlations, which were
described in Duane (1997) as partial synchronization, in
a low-order truncation of a barotropic model. In the pre-
sent paper, we showed that introducing an extended trop-
ical region and topographic variations, including extra
modes in the truncation, and decoupling the hemispheres
half the time did not destroy the relationship between the
two midlatitude flow systems, though some topographic
configurations yielded anticorrelation instead of corre-
lation. The annual cycle in thermal forcing enhanced the
correlations slightly. It is hypothesized that including bar-
oclinicity in an atmospheric system with the same ap-
proximate two-fold symmetry would leave the correla-
tions intact. It is also believed that a two-hemisphere
model based on spherical geometry that included enough
modes to avoid the need for unrealistically large forcing,
such as the model of Legras and Ghil (1985), would also
exhibit partial synchronization. The single-hemisphere
model we used in this study is descended from the six-
component model of Charney and DeVore. Those authors
chose to study an oversimplified model because its mul-
tiple equilibria coincided qualitatively with those found
in the real atmosphere, with the following caveat: ‘‘We
regard our preliminary findings as useful primarily for
their heuristic character, not for their detailed explanation
of specific phenomena’’ (Charney and DeVore 1979).
Given the robustness we have demonstrated in the mod-
eled interhemispheric correlations, we regard our present
findings as similiarly useful.

While we have shown that the interaction between
the two midlatitude systems through a passive Tropics
can perhaps explain the observed blocking cooccurrence
statistics, one must consider the alternative explanation
that blocking in both hemispheres is triggered by com-
mon tropical forcing. One can show that tropical vari-
ations on interannual timescales, such as variations in
tropical Pacific sea surface temperatures, are not the
cause of the interhemispheric correlations: if one com-
putes the correlation for each winter in the dataset sep-
arately, so as to exclude low-frequency effects, the av-
erage of these values is only about 10% smaller than
the correlation value for the dataset as a whole. This
still leaves the possibility that tropical variability on
synoptic timescales, rather than midlatitude synoptic
variability, may explain the observed correlations. The
two mechanisms are not exclusive of one another. A
definitive way to assess the relative importance of the
two mechanisms would be to examine the behavior of
the interhemispheric correlations in a general circulation
model, as the tropical region is artificially relaxed, to
an increasing degree, to a climatological basic state.

There is indeed evidence that the interaction between
the Tropics and the midlatitude systems is bidirectional.
Rossby waves from the midlatitudes can stimulate con-

vective activity in the Tropics (Kiladis and Weickmann
1992), for instance. But since tropical activity affects both
hemispheres, any such impact on the Tropics provides a
mechanism for effective interaction between the two mid-
latitude systems. [The effect on the summer hemisphere,
though weak because of the stronger easterlies there
(Webster 1982), is completely analogous to the effect of
Rossby waves crossing into the summer hemisphere
through a passive Tropics.] The combination of such sec-
ond-order effects and the direct interaction mechanism
at the longitudes of the ducts may give rise to partial
synchronization similar to that found in our admittedly
oversimplified model since the overall symmetry of the
system is maintained with an active Tropics.

In the synchronized chaos view, the qualitative be-
havior of each component subsystem is determined by
its intrinsic dynamics. Thus, the preferred location of
blocking in each hemisphere is determined by that hemi-
sphere’s effective topography. Only the timing of the
blocking events, which is unpredictable in a chaotic
system and, thus, sensitive to external input, is affected
by the opposite hemisphere. A weak signal across the
hemisphere is still necessary, but such is provided by
Rossby waves emanating from the westerly ducts and
traversing a great circle across the entire hemisphere
(Hoskins and Karoly 1981), either reinforcing or inhib-
iting the intrinsic hemisphere-wide flow patterns that
give rise to blocking.

More generally, the climate system is full of semi-
autonomous, weakly interacting, individually chaotic
subsystems to which the partially synchronized chaos
paradigm may apply. Empirical evidence sometimes
suggests correlations between the gross states of such
subsystems, even when the subsystems are different.
The tendency for strong monsoons to occur during La
Niña years and weak monsoons during El Niño years
(Yasunari 1990; Webster and Yang 1992) is one ex-
ample. A tendency for the the Pacific–North American
(PNA) and North Atlantic Oscillation (NAO) patterns
to covary in some decades is another (Hurrell 1998,
personal communication). The fact that the PNA–NAO
correlations and the monsoon–ENSO correlations them-
selves vary on decadal timescales is possibly related to
the on–off synchronization behavior that occurs in par-
tially synchronized systems, such as our interhemi-
spheric model, in a different parameter regime (Duane
1997). The task of constructing simplified models of the
monsoon–ENSO or PNA–NAO interactions is more dif-
ficult than for the coupling that was considered in this
paper. Models of the interacting systems formulated at
a level higher than that of the primitive equations, how-
ever, may explain the observed correlations. That such
correlations are to be expected regardless of the details
of such models, however, is very much in keeping with
the original ideas of Walker (1924), which preceded the
later mechanistic views. The number of other measur-
able relationships that link remote parts of the earth’s
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climate and are presently unappreciated may be consid-
erable.
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APPENDIX

Coefficients in the Spectral Expansion of the Barotropic Vorticity Equation

Nonvanishing values of the coefficients cjlm and bjl in the expansion (14) of the barotropic vorticity equation
to arbitrary order:

1
l ċ 5 c (l 2 l )c c 1 g c c h 1 b c 2 ml (c 2 c*),O O Oj j j lm l m l m jlm l m jl l j j j2 l ,m l,m l

where j 5 (j1, j2), l 5 (l1, l2), and m 5 (m1, m2) are given below. Values of cjlm and bjl for combinations of
subscripts not described below are zero:2

iÏ2l 1 11
j 5 0; l 5 2m ; j 1 l 1 m odd c 5 (l 1 m ) 21 1 1 2 2 2 j lm 2 25 [ ]pb j 1 l 1 m j 2 l 2 m2 2 2 2 2 2

1 1
2 (l 2 m ) 22 2 6[ ]j 1 l 2 m j 2 l 1 m2 2 2 2 2 2

iÏ2j 1 11
l 5 0; j 5 m ; j 1 l 1 m odd c 5 (m 1 j ) 21 1 1 2 2 2 j lm 2 25 [ ]pb l 1 m 1 j l 2 m 2 j2 2 2 2 2 2

1 1
2 (m 2 j ) 22 2 6[ ]l 1 m 2 j l 2 m 1 j2 2 2 2 2 2

iÏ2l 1 11
m 5 0; j 5 l ; j 1 l 1 m odd c 5 2 ( j 1 l ) 21 1 1 2 2 2 j lm 2 25 [ ]pb m 1 j 1 l m 2 j 2 l2 2 2 2 2 2

1 1
2 ( j 2 l ) 22 2 6[ ]m 1 j 2 l m 2 j 1 l2 2 2 2 2 2

i
j 5 l 1 m ; j 5 l 1 m c 5 (l m 2 l m )1 1 1 2 2 2 j lm 1 2 2 1

bÏ2

i
j 5 l 1 m ; j 5 l 2 m c 5 (l m 1 l m )1 1 1 2 2 2 j lm 1 2 2 1

bÏ2

i
j 5 l 1 m ; j 5 2l 1 m c 5 2 (l m 1 l m )1 1 1 2 2 2 j lm 1 2 2 1

bÏ2

j 5 2l ; j 5 l b 5 ibl1 1 2 2 j l 1
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