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Supplementary Material

Mutual information is based on the concept of entropy, which is associated with the
randomness in a signal. Mutual information measures, in bits, the independence of the

two variables. Claude E. Shannon (S1) originally defined entropy, H(X), for a signal X as

Zf x log, f (x)

where a random event X occurs with a probability f(x). The joint entropy of two

variables X and Y measures the entropy contained in the joint system and is defined as

H(X,Y)=3"p(x,y)xlog,p(x,y)

X,y
If X and Y are independent, the the total entropy of the system would be equal to
H(X)+H(Y). Inall cases, H(X)< H(X,Y) , and the equality is only achieved when X
and Y are totally dependent. Based on these definitions, mutual information can be

defined as

or as

1(X,Y)=H(X)+H(Y)-H(X,Y)
To illustrate these concepts, let X be a normally distributed random variable X ~ N(0,1)
and Y be defined as Y =(B- X +C-Z)/K , where B and C are constants, Z ~ N(0,1) and
K is a scaling factor (K =+/B2 +C2),50 Y ~ N(0,1). Note that for B=0 and C =1, X

and Y are totally independent. Conversely, if B=0 andC =0, X and Y are absolutely

dependent. Figure Sla shows the discrete marginal probability density function (PDF) of
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X and Y after generating 500.000 random numbers which are grouped in a 30-bin
histogram. In this setup, the entropy of X and Y is 3.70 and hence the mutual information
varies from O (total independence) to 3.70 (total dependence). Figure S1b and Figure S1c
show the joint distribution of X and Y for C =1 and B =0 and B = 0.5 respectively. In
the first case the joint distribution is equal to the product of the marginal distributions and
the mutual information is zero. In the second case, the mutual information is 1.11,
implying that by knowing X, a fraction of Y is also known. As B increases, the mutual
information of X and Y goes to zero, implying a loss of dependence. Figure S1d shows

results for B=1.
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Figure S1. a) Discrete marginal probability density function (PDF) of X and Y. b) and c)
Joint distribution of X and Y for C=1 and B =0 and B =0.5 respectively. d) Change

of mutual information relative to C for B =1.
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Now, assume that we have two related variables X and Y defined as following

X =X, +X,
Y=K-X,+L-X,+Y,

where K and L are constants, X, =a+Db-t represents a trend in the signal X (Fig. S2a),
X, = c-sin(a)-t) represents the variability of X, and Y, ~ N(0,0'z). According to the

definition of Y, the relative magnitude of K and L determine the degree of dependence

of Y on X.If K=1and L=0 (Y,; Fig. S2b), the dependence is exclusively due to the

trend; if K=0 and L =1 (Y,; Fig. S2c), then the dependence is due to variabilty.

Figure S2. Variables a) X ,b) Y, andc) Y, .

When variables that share information are composed of different signals and scales of
variability, it is vital to determine the origin of the mutual information. That is the
situation for X -Y, (case A) and X -Y, (case B). In case A, we know that the
information shared corresponds to the trend in both variables, while in case B, the
relationship between the variables is the periodic variability. Here we illustrate for the
synthetic cases A and B the mutual information analysis by isolating the components of

the variables and evaluating the source of the information shared. Figure S3 shows the
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scaled joint distribution ( p(x,y)/ f (x)g(y)) of X and both versions of Y (Y, and Y, ) as
well as the scaled joint distributions isolating the trend and the variability in X ( X, and
X,). Grids with values greater than one in the scaled joint distribution contain the
information shared by the variables. The scaled distributions of both X -Y, (Fig. S3a)
and X -Y, (Fig. S3d) illustrate the expected proportional relatioship between variables.

The mutual information in both cases is 0.42 and 0.57 respectively, compared to the
maximum achievable mutual information of 4.32 and 4.39. The mutual information is
relatively low due to the effects of the information not shared by the variables: variability

in X and randomness in Y, (case A), and trend in X and randomness in Y, (case B).

When the trend in X is isolated from the variability, the mutual information of X and

Y, (case A) increases to 1.27, which is shown graphically by Fig. S3b. Once again,
information shared is not the maximum value due to the randomness in Y,. In contrast,
the mutual information of X and Y, (case B) decreases to 0.28; in Fig. S3e most values

are less than one. On the other hand, when the trend is removed, the information
between X and Y, (case A) decreases to 0.01 and between X and Y, (case B) increases
to 1.41. Figures S3c and S3f explain graphically the mutual information for cases A and
B after removing the trend. In summary, the mutual information and the scaled joint
distribution successfully shown whether the information shared by two variables in cases

A and B results from the trend or from the periodic variability.
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Figure S3. Scaled joint distribution of a) X and Y,, b) X, andY,,c) X, and Y,, d)
X and Y, ;e) X, and Y,;andf) X, and Y, . Vertical line in the color bar corresponds

to one.
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Figure S4. Scaled distribution in all basins except N1O for a) SST, b) Specific Humidity,
¢) Wind Shear, d) Stretching Deformation at 850 mb, e) SST variability, and f) SST
trend. Results do not change substantially when compared to those obtained using all six

basins (Figures 2- 4).
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Figure S5. 5-year Moving average anomalies relative to the 1970-2004 period of Moist
Static Stability Index. The index is defined as the difference between the equivalent
potential temperature at 500mb and 1000mb. The standardized trends of the moist static
stability (comparable to those in Table 1) for all the basins are: EPAC 0.82, NATL -2.14,
NIO -2.33, SIO -2.62, SPAC -1.88, and WPAC -5.68. Values in bold are statistically

significant at the 99% confidence level.
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