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SUMMARY

A spring ‘predictability barrier’ exists in both data and models of the El Nifio/Southern Oscillation {(ENSO)
phenomenon. In statistical analyses this barrier manifests itself as a drop-off 1 monthly persistence (lagged
correlation) while in coupled ocean—atmosphere models it appears as a decrease in forecast skill.

The ‘persistence barrier’ for ENSO indices is investigated using historical sea surface temperature and sea-
level pressure data. Simple statistical models are used to show that the persistence barrier occurs because the boreal
spring is the transition time from one climate state to another, when the ‘signal-to-noise’ of the system is lowest
and the system is most susceptible to perturbations. The streagth of the persistence barrier 18 shown to depend on
the degree of phase locking of the ENSO to the annunal cycle.

The phase locking of the ENSO to the annual cycle, as well as the ENSO vaniance, is shown to vary on
interdecadal time-scales, During 18711920 and 1960-90 the ENSO variance was high, while during 1920-50
it was low. Using wavelet analysis, this interdecadal variability in ENSO is shown to be correlated with changes
in Indian summer monsoon strength. Finally, the change in persistence-barrier strength between 1960-79 and
1980-95 is related to changes in the phase locking of ENSO 1o the annual cycle. These changes in persistence
and phase locking appear to be related to the increased forecast skill seen from recent coupled ocean—atmosphere

models,

Kevworns: El Nifio/Southern Oscillation  Interdecadal varighility Predictability

1. INTRODUCTION

During the 1930s, Sir Gilbert Walker outhned the characteristics of the ‘Southern
Oscillation’, consisting of a global-scale ‘see-saw’ of pressure, rainfall, and temperature
anomalies centered on the tropical Pacific Ocean (Walker and Bliss 1932, 1937). Walker’s
attempts to ‘foreshadow’ the strength of the Indian summer monsoon were based on both
the high correlations of his ‘Southern Oscillation Index” (SOI) with the Indian monsoon,
and the seasonal persistence of the oscillation. Unfortunately, Walker discovered that the
persistence in the SOI is much higher following the June—August monsoon season, than
preceding the monsoon. Furthermore, the correlations between the Southern Oscillation
and the Indian monsoon decreased considerably after about 19235, leading to speculation
that whatever usefulness Walker’s model might have possessed was now gone {Normand
1933; Treloar and Grant 1953).

After a thirty-year quiescent period, both in research and i Indian monsoon and
Southern Oscillation variability, Troup {1965) re-examined the evidence and found that,
while there had been some secular changes since 1920, all of Walker’s earlier correlations
rematned valid. Walker’s index still showed large persistence from season to season, with
the least persistence across the March—May season. In examining this seasonal change in
persistence, Walker and Bliss (1932} concluded that “conditions in the southern winter
exercised greater influence on subsequent seasons than did those in the southern summer”.

Much of the research in the last thirty years has been on analysing the Southern Oscil-
lation as part of the larger El Nifio/Southern Oscillation (ENSO) phenomenon, involving
basin-wide migrations of both pressure and sea surface temperatare (8ST) anomalies (Ras-
musson and Carpenter 1982). The recognition of the ENSO as a coupled ocean—atmosphere
phenomenon has enabled the development of simple models capable of useful predictions
up to nine months 1n advance {Cane et al. 1956).

* Corresponding author: Advanced Study Program, National Center for Atmospheric Research, PO Box 3000,
Boulder, CO 8030730040, TISA.
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Unfortunately, many of these models suffer from a decrease in forecast skill in the
boreal spring months of March-May (Barnston ef al. 1994). This ‘predictability barrier’
has been found in an oceanic general circulation model (Latif and Graham 1991), in
dynamical-statistical models (Balmaseda et al. 1994), and in coupled ocean-atmosphere
models (Goswami and Shukla 1991; Xue ef ol 1994).

The predictability barrier has been attributed to the low variance of the ENSO during
the spring (Xue ef al. 1994). During the spring, errors due to initialization or ‘weather’
can project most strongly onto ENSO modes, leading in turn to large error growth and
poor forecasts (Blumenthal 1991; Moore and Kleeman 1996). It has been suggested that
the inclusion of external influences such as the Asian monsoon may help to ‘bridge’ the
barrier (Webster and Yang 1992), but the results are tenuous at best (Lau and Yang 1996).
Recent model results by Chen et al. (1995, 1997) also suggest that a coupled initialization
procedure 1s able to reduce the barrier,

Rather than view the spring barrier as a failure of the models, it is noted that a similar
drop-off 1s seen 1n the persistence of ENSO indices (Wright 1985; Webster 1995). First
noticed by Walker and Bliss (1932}, the ‘persistence barrier’ has been found in indices of
central Pacific rainfall (Wright 1979), Atlantic SST (Wright 1987), the SOI (Troup 1965;
Webster and Yang 1992), as well as Pacific SST (Xue et al. 1994),

The purpose of this paper is to examine in detail the persistence barrier for the ENSO,
and discuss the relationship between the persistence barrier and model-forecast skill.

Section 2 discusses the data sets. Section 3 gives background results on the persis-
tence barrier, while section 4 provides statistical models to explain the persistence barrier
in ENSO indices, and introduces the signal-to-noise ratio. The spatial extent of the persis-
tence barrier is also discussed. Section 5 examines changes in variance and persistence on
interdecadal time-scales. Section 6 relates the persistence barrier and interdecadal changes
to ENSO-forecast skill. Conclusions are given in section 7.

2. DArta

The SOI is traditionally defined as the standardized difference between the stan-
dardized Tahiti (17.6°5, 149.6°W) and Darwin (12.4°S, 130.9°E) sea-level pressure (SLP)
(Trenberth 1984). However, missing data in the Tahiti record make it difficult {0 extend
the SOI back betore 1933 (Ropelewsk: and Jones 1987). To overcome this difficulty, an
alternate measure of the SOI will be used, based on the UKMO/CSIRO” historical SLP
data set {GMSLP2.11, on a 5°-grid, monthly 1871-1994; by courtesy of D. Parker and
T. Basnett, Hadley Centre for Climate Prediction and Research, UKMO). Anomaly time
series have been constructed by removing the first three harmonics of the annual cycle
(365.25, 182.623, and 121.75 days) using a least-squares fit. The SOI from the GMSLP
is defined as the seasonally averaged pressure diftference between the eastern Pacific (at
20°S, 150°W) and the western Pacific (at 10°S, 130°E). This SOI has about 20% less vari-
ance than the Tahiti—-Darwin SOI, but does not contain any missing data, and also extends
further back in time. Henceforth, the term SOI will refer to this GMSLP-derived 1index.

The Indian monsoon strength is derived from the all-India RF1 rainfall index given in
Parthasarathy et al. (1991}. The index 1s defined as the deviations from the normal rainfall
for June—September, and is available from 1871 to 1994. For details of the all-India index
and its relation to regional rainfall anomalies, see Mooley and Parthasarathy (19843,

Gridded monthly SST data for 1871-1996 1s from the UKMO GISST2.3 (Rayner
et al. 1996). The quality of gridded SST data (GISST) between 1871 and 1950 varies

* UK Meteorological Office/Commonwealth Scientific and Industrial Research Organisation.
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Figure 1. Time series of NINQ3 {see text) sea surface temperature (88T, solid line, units in “C) and the southem

oscillation index {SOI, dashed Hne, units in standard deviations). For presentation purposes, both time series have

been smoothed by an 1i-month Lanczos filter (Trenberth 1984}, The black marks on the top axis mark starting

years of El Nifio events, while those on the bottom axis mark La Nifia events, as defined by Kiladis and Diaz
{1989).

considerably both spatially and temporally. Ship data before 1900 are sparse, especially for
the southern hemisphere. After 1900 the data coverage increases, except for during World
Wars I and II. Around 1940 many ships changed from bucket to ship-intake measurements
of temperature, causing discontinuities on the order of 0.3 degC. The GISST data set
attempts to correct for all of these biases by using the existing data to construct empirical
orthogonal functions (EOFs), and then projecting these modes onto the available data. A
discussion of the technmique 18 given in Rayner ef al. (1996), while a general discussion of
data-quality issues for ship SST measurements may be found in Folland et al. (1984).

The NINO3 S5T index 1s defined as the area-averaged GISST over the central Pacific
(5°5-5°N, 90°W-150°W). Monthly anomalies are computed with respect to the annual
cycle of the entire time series.

Smoothed versions of both the NINO3 SST and the SOI are shown in Fig. 1, where
one can see the strong anti-correlation between the two (correlation coefficient r = —0.77
for the smoothed time series). The black marks indicate warm ENSO events (top axis) or
cold ENSO events (bottom axis), as defined by Kiladis and Diaz (1989). There 1s large
variability in the amplitude, duration, and frequency of ENSO events, with very strong
events such as the 1982-83 El Nifio as well as the long lasting 1991-95 ‘warm event’.
There are hints of interdecadal variability, with an active period in the early 1900s followed
by a relatively quiet period from the 1920s to the 1950s followed by the most recent active
period. In the next section the persistence and phase locking of the time series (unsmoothed)
will be discussed.

3. ENSQ muDICES

In this section, the autocorrelation, persistence, and phase locking of the ENSO are
examined. Results in these subsections are based primarily upon the work of Trenberth

(1984), Webster and Yang (1992), and Rasmusson and Carpenter (1982).

(a) Autocorrelation

The ‘autocorrelation’ is the correlation of an entire time series with itself, but shifted in
time by a certain lag. Both the SST and the SOI show a slow drop-off of autocorrelation (cf.
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Figure 2. (a} Persistence of the NINO3 {see text) sea surface temperature {SST). Each curve hias been shifted to

line up the starting month (indicated at the fop, where JAJO=January, April, July, October) with the corresponding

Iag month (lower axis}, and the twelve curves have been repeated for clarity. The black dots show the lag-1

persistence. (b) Same as (a) but for the southern oscillation index (SOI). {¢) Same information as (3} but viewed

as a persistence ‘map’ with starting month along the y-axis. The contours are every (0.1, with thick contours at 0.0

and 0.5. {d) Same as (¢} but for the SOL. In all plots, the shaded region indicates less than 93% confidence for
Student’s t-test with 121 degrees of freedom.

Trenberth 1984), The SST autocorrelation (not shown) reaches the limit of ‘useful skill’ of
r = (.6 (Barnston et al. 1994) after four months and crosses the zero line after 12 months.
The high degree of autocorrelation in both indices 1s consistent with the observation that
ENSO anomalies tend to persist for several months, and suggests that one can gain useful
information from a forecast of simple persistence out to several months. However, as shown
in the next subsection, this is not true for every month. The starting month of a persistence
forecast plays a crucial role 1n the success or failure of the prediction.

(&Y Persistence

Following Troup (1965), the ‘persistence’ is defined as the fixed-phase correlation
between different months of a single time series. The persistence from January to July in
the SOI is the correlation coefficient between all January SOI values and all July SOl values
(see appendix for formula). Unlike the autocorrelation, whick is independent of starting
month, the persistence returns information about any seasonal changes in the correlation
between one month and the next

Figures 2(a) and 2(b) show the persistence for the NINQO3 SST and the SOI time
series, and are similar to plots i Webster and Yang (1992) and Wright (1985). Unlike
the simple decay of the autocorrelation, the persistence shows a distinct structure that 1s
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phase locked to the annual cycle. The persistence drops off more slowly for late spring
and summer starts, followed by sharp drop-offs during the following March—April. Note
that the persistence barrier can also be seen in the lag-1 persistence (the black dots) as a
minimum in June (§8T) or April (SOI).

In the persistence maps (Figs. 2(c) and 2(d)) the drop-off appears as a vertical align-
ment of contours centred on March—April-May. Compared to the NINQO3 SST, the SOI
shows a less well-defined barrier due to high-frequency noise, which also appears in the
lower lag-1 persistences for the SOI. Beyond twelve months, the SST and SOI persistences
are slightly negative, possibly due to the biennial nature of ENSO: of the 29 warm ENSO
events since 1877, 10 were followed the next year by cold events. Plots of the root-mean-
square (r.m.s.) error for persistence forecasts (not shown) give a similar persistence barrier.
For r.m.s. error, the barrier appears as a sudden increase in error during spring, regardless

of starting month.
There are two main observations for the NINO3 SST and SOI persistences:

(1) regardless of starting month, the persistence in ENSO indices is consistently high
through the followmmg March; and

(ii) regardless of starting month, the persistence shows a rapid decline in March-
April-May.

In the next subsection a hypothesis will be given to explain the existence of a persistence
barrier within a time series.

(¢} Phase locking of ENSO

It is well known that many ENSO events are phase locked to the annual cycle (Ras-
musson and Carpenter 1982), although the degree of phase locking may vary from decade
to decade (see section 5). A composite of the NINO3 §ST index for the last 29 warm
ENSO events and 22 cold ENSO events is shown in Fig. 3. Both warm and cold events
begin as anomalies of the opposite sign in year (1), cross the zero-anomaly line around
March of year (), and peak 1n the following winter.

The ENSQO cycle is confirmed by global composttes of wind fields and 55T (Rasmus-
son and Carpenter 1982), as well as outgoing long-wave radiation and precipitation (Meehl
1987). The biennial nature of ENSO can be seen as the tendency for warm events to be
followed by cold anomalies, and the even larger tendency for cold events to be preceded by
warm anomalies. The analysis by Barnett (1991) of the quasi-bienmal component (2030
months) of winds along the equator (using data from 1950 to 88), shows phase locking to
the annual cycle, with roughly 50% of the zero-crossings occurring during February-April.

Using the composite ENSO 1n Fig. 3 as a guide, and paralleling the observations at
the end of section 3(b), the following hypothesis is proposed:

(1) the persistence 18 consistently high during May—January due to the slow, steady
growth of ENSO events; and |

(11) the persistence drops off in the boreal spring due to the low signal-to-noise of
ENSO relative to the background. This low signal-to-noise is a result of the strong
phase locking of ENSQ to the annual cycle, which causes the time of transition
between ENSO events to occur in the spring.

Note that a persistence barrier does not necessarily imply a loss of actual predictability.
Looking at Fig. 3, it might appear that if one knew the winter—spring trend in NINQO3
SST, then one could predict SST anomalies for the following winter. However, Fig. 3 is
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Figure 3.  Composite of the 29 El Nifio events and 22 La Nifia events occuting between 1877 and 19935, as defined
by Kiladis and Diaz (1989). The composite is the mean of monthly sea surface temperatare (SST) anomalies
for all warm events (solid dots) or cold events (open dots). Year Os are defined as in Rasmusson and Carpenter
(1982). Dotted lines mark the 95% confidence levels for a mean of 22 points taken from a population with the
monthly-varying standard deviations of the entire NINO?2 (see text) SST time series.

a composite over only anomalously warm and cold years, and thus has the advantage of
hindsight. Indeed, a correlation of trend from winter to spring on the months following
spring shows only a small skill improvement (= 0.1) compared with the persistence in
Fig. 2. In addition, during winter—spring, the annual cycle in the eastern Pacific shows
a warming trend, making it difficult to distinguish potential warm events from possibly
random fluctuations in the amplitude or phase of the annual cycle.

4, THE PERSISTENCE BARRIER

In this section, two different statistical models are developed to explain the persistence
barrier in ENSO indices. These models are then analysed in terms of the annual cycles of
their signal-to-noise ratios. The spatial extent of the persistence barrier is then examined
using global SST fields.

(@) Autoregressive model

The hypothesis in the previous section will be tested using the persistence of several
time series. As the persistence is defined in terms of a fixed-phase correlation, the most
natural model to consider is a simple autoregressive (AR) equation:

X, =tn X, + Z;, (1)

where X represents an ENSO index such as the NINO3 SST, and the subscript ¢ 1s the
time measured in months starting from year zero. It is assumed that X = 0, and the model
18 then integrated forward by successively substituting in previous X values and new Z
values. The AR coefficient, «,,,, may depend on the month m. Finally, Z, is drawn from

twelve Gaussian white-noise processes of zero mean and variances o2 .
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The fixed-phase persistence for (1) can be derived analytically (see appendix), and 18
given by,

P (k) = —" Haw 2)

m+k

where the subscript m indicates the starting month, £ is the lag in months, and o,, 8 the
standard deviation of X, for the mth month (see appendix for equation). The persistence
from one month {m) to another (k months in the future) depends on the ratio of the standard
deviations of the two months, and the product of the AR coefficients between m + 1 and
m + k, as each successive month decreases the persistence from the previous month.

In an attempt to simulate the persistence barrier using (1), several cases will now be
considered.

(i) Constant AR coefficients and constant noise variance. For o, = o and oz, = 0z,
the persistence in (2) becomes P, (k) = o*. This persistence is independent of starting
month and cannot produce a persistence barrier.

(it) Constant AR coefficients and varying noise variance. Now, «,, = o, while ¢z,
is allowed to vary with month, and the persistence is given by P, (k) = &*0, /G-
In this case, a drop in variance during the forecast season (say the boreal spring) will
actually cause an increase in persistence, due to the small amplitude of the signal
being predicted. Since this is not observed, the persistence barrier in ENSO cannot
be explained solely by an annual cycle in the noise variance.

(iii) Varying AR coefficients and varying noise variance. f o, and oy, are both
allowed to vary with month then one has the persistence given in (2). An examination
of (2) shows that if &, has a minimum at some month m,, then P, (k) will tend to have
a minimum whenever (m + k) = my. Thus, there will be a drop-off in persistence
whenever month m, is crossed.

There is also a fourth case, which is of varying AR coefficients and constant noise variance.
This case also exhibits a persistence barrier similar to case (iii). As will be seen below, the
inclusion of variable noise variance simply allows a closer fit to the observed persistence
barrier, but does not qualitatively change the results.

To simulate the NINO3 SST persistence barrier using an autoregressive model, one
therefore needs an annual cycle in the AR coefficients. To approximate these coetficients,
one can substitute the lag-1 persistences derived from the NINO3 SST into (2) and solve
for the AR coefficients:

N

Uy, = P (1) (3)
Ty 1

where the tilde (7) indicates a quantity from the NINO3 SST data. To estimate P,..;(1)
one could use the lag-1 persistences of the NINO3 SST (the black dots 1n Fig. 2(a)), but
these tend to overestimate the persistence and produce a weak barrier. For a more robust
measure of the barrier, the six-month persistence values (Pm 3 (3)) are used instead. These
P,._1(3) are each assumed to result from a simple AR(1) model, 1.e. Pm (3 =[P, (DI,
and one can then solve for the ‘effective’ lag-1, P,_((1). The noise variances are given

by 02, =62~ a’o-_,, which is the unexplained variance of each month. The NINO3

w - m—1
persistences and variances, along with the AR coefficients, are given in Table 1, This
model explains 81% of the NINO3 SST variance (compared with 79% for a simple AR(1)
model).
The resulting persistence is shown in Fig. 4(a), where we see evidence of a spring

persistence barrier caused by the decline in one-month persistence during March—Apnil.
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TABLE 1. PARAMETERS USED IN THE AUTOREGRESSIVE MODEL OF Eq. (1).

Jan  Feb  Mar Apr May Jun  Jul Aug Sep Oct Nov Dec

Tt

Pu_3(3) 047 032 045 G608 011 025 039 060 070 070 071 0.64
gn% {deg() 082 063 045 046 042 037 044 053 059 068 084 090
P (b G.88 083 073 G666 069 079 085 092 094 094 094 .93
G 084 073 062 066 067 074 093 100 100 101 106 096
ﬂ'%m (degC)y 018 020 021 0626 022 014 012 0608 006 D08 009 0.12

The lag-6 persistences {E@hg{ii}) and variances (gi} are from the NINO3 SST data. The model has lag-1
persistences P,,_;(1), AR coefficients w,,, and noise variances o2

am’
a. Autoregressive b, Cosine
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Figure 4. (a)} The persistence of the monthly-varying autoregressive model of (1), with coefficients determined

from the NINO3 (see text) sea surface temperature (SST) data. For comparison with the NINO3 SST persistence,

the dotted lines with enclosed shading indicate the 95% confidence levels for Student’s t-test with 121 degrees of
freedom. The black dots mark the lag-1 persistences. (b) Same as (a) but for the cosine model of (4).

During the spring w,, < 1, and random perturbations decay quickly, while during other
seasons o, = 1, and the system behaves more like a random walk, with perturbations that
can persist and even grow temporarily, These results are similar to those of Blumenthal
(1991), who showed that the largest error growth in a principal-oscillation-pattern (POP)
model occurred in February and May. It is encouraging that the model contains growing
anomalies similar to growing ENSO modes; yet this growth is constrained by the somewhat
arbitrary annual cycle in AR coefficients, rather than any inherent phase locking of ENSO
events. The next model that we will consider contains both specified phase locking and
typical ENSO events.

(by Cosine model

To simulate the development and structure of actual ENSO events, the following
model 1s now considered:

Xi= fuvn +2:, @

where n is the year, and t = 12n —i--m‘ In (4}, £, 1s an idealized ENSO event, y, is a three-
valued function {—1, 0, +1} that sets what type of event will occur that year, and Z, is a
Gaussian white-notse process. ENSO events are assumed to last twelve months and have
the form:

f = 2sin*{(m — D /12}, (5)
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which starts at zero in April (m = 3) and peaks in October (m = 9). The occurrence of
an event is determined each April by choosing from a uniform random distribution in the
range [0, 1], and setting y, according to the following probabilities:

-+1 (Warm event): 23%
Vi = 0 (no event): 59% . (6)
—1(Cold event): 18%

These probabilities are derived from the 29 El Nifo and 22 La Nifia events that took place
between 1871 and 1995 (Kiladis and Diaz 1989).
The monthly variance of (4) is 02> =T'f? 4 o, where [' = 0.41 is the total chance

of an event occurring, and o2 = 0.25 °C” is the noise variance. The monthly persistence
of (4)1s:

] k=0
Pm (k) = Ffm fm+k5nre’ F=1 ’ (7)
TmOpitk

where »’ is the year of month m + k&, and &, is zero unless m and (m + k) are in the
same April-March year. This persistence is shown in Fig. 4(b). For starting months and
lags during the same ‘El Nifio’ year of April-March, the persistence remains constant. For
lags that cross the spring transition the persistence abruptly drops off. Compared to the
autoregressive model, this ‘random-ENSO-event’ model appears to capture more of the
essential features of the ENSO cycle, namely, the phase locking of a strong growth-and-
decay signal to the annual cycle. This ‘cosine’ model satisfies both parts of the hypothesis,
and produces a persistence barrier that fits the observed barrier in NINO3 SST and the

SOL

(¢} Signal-to-noise ratio

In case (i1) above, it was shown that an annual cycle of noise variance was unable to
explain the persistence barrier in ENSO indices. The AR model with varying coefficients
and the ‘cosine’ model with phase-locked events suggest that the persistence barrier 1s
caused by a loss of ‘information’ about conditions following the boreal spring.

The information loss can be parametrized by the signal-to-noise ratio of the system.
Figure 5 shows the annual cycle of variance in the NINO3 §ST, and the signal-to-noise ratio
in the AR and ‘cosine” models. The monthly signal-to-noise 1s defined for both models as
the difference between the total and noise variance divided by the noise variance, 1.e.

g2 — g2
(S:N)y = o (8)
2t

If one assumes a constant noise variance for the NINQO3 SST, then the monthly variance can
also be considered as a measure of the signal-to-noise (but note that low variance by itself
does not yield low persistence). All three curves show a minimum in spring, indicating a
minimum in ‘predictive signal’. As noted earlier, this loss of information during the spring
does not equate to a loss of predictability of the coupled ocean—atmosphere system. It
does, however, imply that coupled models that are limited to the tropical Pacific basin may
suffer a decrease in predictive skill due to the spring persistence barrier.
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Figure 5. The signai-to-noise ratio (left a}zis} for the antoregressive (AR} model (solid line) and the cosine (Cos)
maodel (dashed line). The solid line with dots is the annual cycle of NINO3 {see text) sea surface temperature (SST)
variance (“C*) from 1871 to 1996 {right axig).

(d) Spatial extent of persistence

The success of coupled ocean—atmosphere models for ENSO prediction depends in
part on the large spatial extent and high persistence of anomalies in the tropical Pacific.
In this section the spatial extent of the persistence barrier is examined and is related to
overall forecast skill for the tropics,

Figure 6(a) shows the six-month seasonal persistence in SST anomalies from June—
August (JJA) to the following December-February (DJF). In most of the tropics the per-
sistence 15 greater than 0.2 (98% significant), while in the core ENSO region in the central
Pacific the persistence is greater than 0.4 (99.9% significant). Therefore, given the SST
conditions in JJA, this persistence ¢an be used to make useful predictions of DJF conditions
over much of the tropics. This persistence is not constant throughout the annual cycle, as
shown by the DIF to JJA persistences in Fig. 6(b). While the persistence remains above
0.2 over much of the tropics, in the eastern equatorial Pacific it has dropped to near zero.
Since this is the region of largest ENSO anomalies, and has the greatest effect on the other
tropical regions, a decrease in persistence implies a decrease in predictive skill for the
entire tropics.

Other regions of the tropics, such as the northern Indian Ocean, the Atlantic or the
south Pacific, appear to have maderate persistence, at least for these two seasons. In
addition, the persistence in the central Pacific south of the equator is greater for DIF-JJA
than for JJA-DIJF, suggesting that there is a migration of high persistence with the annual
cycle. It 1s possible that connections between these high-persistence regions and ENSO
could be used to improve forecasts across the spring barrier.

One phenomenon that is known to have an impact on the ENSO is the Indian monsoon
(Meehl 1987). It has been observed that strong monsoons tend to be followed by cold SST
anomalies in the eastern Pacific, and vice versa. Lau and Yang (1996) suggest that models
that include the influence of the Asian monsoon on ENSO may be able to use this high
Indian Ocean ENSO persistence to help bridge the spring Pacific Ocean ENSQ persistence
barrier. The phase difference between the Indian and Pacific Oceans can be seen in a
Hovmoller diagram of six-month seasonal persistence along the equator (Fig. 7(a)). As
expected, the six-month persistence has a strong annual cycle in the eastern Pacific, with
the smallest persistence across the spring season. This annual cycle of persistence shows
a clear westward progression, corresponding to the westward propagation of anomalies
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Figure 6. (1) Six-month persistence (x 10) of all June-August {(JIA) sea surface temperatare (SST) anomalies

from 1871 to 1996 with all the following December—February (DIF} SST anomalies. Contours of persistence are

every (1.2 with shading at 0.4 and 0.6. The 95% confidence level is .15 for 125 degrees of freedom. (b) Same as
(a) but for DIF anomalies correlated with the following JJA anomalies.

in most ENSO events. The most striking feature is the persistence in the eastern Indian
Ocean, where the persistence annual cycle is 180°out of phase with the eastern Pacific. In
the Indian Ocean, SST anomalies appear to persist from the end of the summer monsoon
season, through the following winter, to the beginning of the next monsoon.

It could be argued that the signal in the Indian Ocean 1s due solely to ENSO effects
that have propagated westward. To remove the ENSO signal, the NINO3 SST was linearly
regressed against each grid point at fixed phase (1.e. all January values, then all February
values, etc.); this regressed time series was then removed from each point. The fixed-phase
regression was used to avoid any artificial signals due to annual cycles in persistence.
Figure 7(b) shows the six-month ‘non-ENSQO’ persistence at each grid point along the
equator. The persistence in the eastern Pacific has disappeared (along with the annual
cycle), but there 1s still considerable persistence in the Indian Ocean and the western
Pacific. A clear semi-annual signal 1s also present in the persistence (with peaks in April-
June (AMJ) and October-December (OND)), which 1s perhaps related to the semi-annual
cycle of insolation on the equator.

The above results suggest that the large persistence across much of the tropics can be
used to improve model-forecast skill. At the same time, information outside of the eastern
Pacific may be helpful in bridging the spring persistence barrier.



1996 C. TORRENCE and P. J. WEBSTER

a. Atlantic  Indian Pacific

-
-

S. America

80°W 0° 80°E 120°E 180° 120°W 80°W
L.ongitude
indian Facific

Starting Season —
5. America

120°E | 120°W B0°W
Longitude

Figure 7. (a) Annual cycle of six-mmonth persistence {x 10} of sea surface temperature (SST) anomalies at each

point along the equator. The method is the same as in Fig. 6. The y-axis indicates the starting month and the cycle

has been repeated. Contours are every (.2, with shading at 0.4 and 0.6, The vertical white bands indicate land. (b)

Same as (a) but with the NINO3 (see text) S8T signal removed from each grid point, using a fixed-phase regression
of monthly NINO3 S5T onto each point.

5. INTERDECADAL VARIABILITY

(@) Interdecadal changes in variance

Improvements to model forecasts, such as that shown for the Cane~Zebiak model
(Chen et al. 1995), as well as results from statistical analyses, must be viewed in the
context of longer-term variability. Both the Asian monsoon and ENSO have undergone
stignificant interdecadal changes in the past 100 years (Parthasarathy ez al. 1991; Trenberth
1976). «
Using wavelet and waveform analysis, Wang and Wang (1996) showed that east
Pacific SST and Darwin SLP underwent considerable interdecadal variability, Specifically,
perieds from 1875 to 1920 and 1960 to 1990 showed high ENSO variance, while 1920-50
showed low ENSO variance. Gu and Philander {1995) present similar changes in the zonal
winds. However, the analysis of Wang and Wang also showed reduced wavelet power
before 1930, possibly duoe to the sparseness and decreased reliability of the pre-1950 data
from COADS (Comprehensive Ocean—-Atmosphere Data Set; for details see Folland ez al.
(1984)).

To quantify and i1solate the time-scales involved in these variance changes, the NINO3
53T, the SOI, and the Indian rainfall time series were decomposed using a wavelet trans-
form. The wavelet transforms were then scale-averaged between 2 and 8 years, to produce
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4 time series of variance in the ENSQ frequency band. For details of the wavelet analysis,
including the derivation of significance levels, see Totrence and Compo (1993).

Figure 8 shows the time series of 2-8 year variance for NINO3 SST, the SOI, and
Indian rainfall. The variance in all three indices shows a long-period change, with high
variance between 1875 and 1920, low variance from 1920 to 1950 and then high variance
from 1960 to 1990. The new significance tests indicate that these long-period variance
changes are statistically significant (Torrence and Compo 1998). The use of the GIS5T2.3
dataset appears to increase the reliability of the pre-1950 NING3 S5T, and suggests that
the pre-1920 period has equal power to the post-1960 period. In addition to the period of
low variance during 1920-50, there appears to be a 12 to 20-year oscillation in variance.
This 12 to 20-year ‘oscillation’ may be due to the occurrence of extreme ENSO events,
which tend to recur every 8-15 years.

(b) Interdecadal changes in persistence

The interdecadal variability shown in Fig. 8 should be reflected in the persistence,
with periods of low ENSO variance (1920-50) associated with small persistence, and
periods of high variance associated with large persistence. The persistence for 1871-1920
is shown in Fig. 9(a), and appears similar to the persistence for the entire time series in
Fig. 2. The persistence for 1920-50 (Fig. 9(b)) is much lower and has less of a barrier
compared to either the earlier or later period

The most recent period can be further divided as shown in Figs. 9(c) and 9(d): the
1960-77 period shows strong phase locking of persistence to the annual cycle, while the
1978-95 period shows very little phase locking of persistence. Using arunning three-month
persistence, Balmaseda ef al. (1995) found similar changes between all four periods. As
discussed in the next section, this change in the phase locking of persistence can be related
to changes in the phase locking of ENSO events.

6. DISCUSSION

{(a) Model-forecast skill

A spring predictability barrier is seen in the skill of models attempting to predict
tropical interannual variability (Barnston ez al. 1994). Four of the five models used in
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Barnston ef al. show the lowest skill when predicting anomalies for the summer (JJA).
These four also have the largest r.m.s. error between observed and predicted SST for spring
(March~May) or summer forecasts. The only exception is the NOAA/NCEP* coupled
model (Ji et al. 1994), which has the lowest correlation and highest r.m.s. error for fall
(September—November) forecasts initiated in the previous winter (DJF). This is possibly
due to the inclusion of subsurface ocean temperatures in the model initialization, which
may improve the short-range forecasts and delay the skill drop-off. All five models have
the highest correlation and lowest rm.s. error when predicting the winter season using
forecasts 1nifiated in the previous spring.

Xue ef al. (1994) attribute the decline in model-forecast skill across the spring to the
low variance of the NINO3 SST anomalies during March-May. Defining the mean-square
error (M S E) between the observed SSTs, X, and the forecasts, ¥, as MSE = (X — Y)?),
where { ) mdicates the mean, they show that the correlation between X and Y can be

writien as:

(XY) MSE
r = =1 —

; 9
G 207 ®)
where 1t has been assumed that the standard deviation ¢ is the same for both X and Y.
Xue ef al. assume that the M SE is constant, and then conclude that the annual cycle in

NINQO3 vartance (with a spring minimum), should produce a spring persistence barrier. As

* National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction.
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noted by Xue et al., however, the M SE is also lowest in the spring, and hence it 1s unclear
which one is the dominant term. The dilemma is solved by noting that the correlation,
mean-square error, and standard deviation are all functions of X and ¥ and should not be
thought of as independent quantities. If X and Y are each normalized by their own standard
deviation, then the correlation becomes,

F1_ %msa)z (10)

where (MSEY is the mean-square error of the normalized variables. This normalized
mean-square error is smallest for winter forecasts and largest for summer forecasts, at
least for the full Cane-Zebiak model (Barnston ef al. 1994).

An example of the relationship between r, MSE, and o is given in Fig. 10, which
shows the persistence forecast for NINO3 SST with a six-month lead. Beginning with
DIF forecasts, the persistence (or forecast skill) slowly drops off across the spring season
to reach a minimum for forecasts of JJIA temperatures. Both the decreasing variance of
the forecast season and the increasing mean-square error contribute to the drop-off in
persistence (in addition to the different variance between the starting and forecast season,
which can no longer be ignored). Because of the annual cycle of M SE, the persistence
r lags the variance o? by about one month. These results are also in agreement with
section 4, where it was shown that an annual cycle in the signal-to-noise ratio could
produce a persistence barrier, while an annual cycle in noise variance could not.

The annual cycle of variance is therefore a result of the spring season being the
transition time between warm and cold events, while the predictability barrier in forecast
skill can be attributed to the large normalized mean-square error during the spring season.

(b) Persistence versus predictability

It is important to note that any time series derived from the phase-locked ENSQO
signal will tend to show an annual cycle in its statistics, For exampile, if a coupled ocean—
atmosphere model shows phase locking of ENSO events to the annual cycle, then an
analysis of forecast skill using model-predicted NINO3 SST will contain a spring barrier.
In analysing the skill of a model, it would thus be better to use some sort of global measure
rather than a single time series.
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The presence of a persistence barrier in a time series does not indicate a true pre-
dictability barrier of the whole system. Both the NINO3 SST and the SOI are limited-area
indices of a global-scale phenomenon. There are certainly many precursors to anomalies
in these time series (Rasmusson and Carpenter 1982), and changes in global circulation
may cause changes in the importance of these indices as indicators of ENSO variability
(Trenberth 1976). In addition, persistence itself relies on the assumption of linearity, and
may not be the most appropriate measure for predictability.

Recent model results by Penland and Sardeshmukh (1995) and Chen et al. (1995)
suggest that the the inclusion of other variables and improved parametrizations, as well as
better initialization, might be able to circumvent the barrier. In both of these models, one
statistical and the other dynamical; the input (or training) data is smoothed by the initial-
1zation process. This smoothing filters out any high-frequency noise that could otherwise
project onto the ENSO modes. Neither of these models shows a significant spring barrier,

however, the interdecadal changes in variance may be masking the influence of the barrier
on ENSO forecasts.

(¢) Interdetadal changes and predictability

The results of section (3) indicate that ENSO undergoes interdecadal changes in
both variance and persistence. Given the changes in both persistence and forecast skill on
interdecadal time-scales, it is unclear whether the predictability barrier has indeed been
‘eliminated’ in the Cane-Zebiak model (Chen et al. 1995). It is possible that the weaker
phase locking of ENSO to the annual cycle during the 1980s might remove any seasonality
in forecast skail.

Using acoupled ocean—atmosphere model, Balmaseda et al. (1995) show that there is a
spring barrier to SST-forecast skill, and that this forecast skill has considerabie interdecadal
variability. During the 1970s the ENSQ variability was strongly phase locked to the annual
cycle, and there was a strong predictability barrier. During the 1980s and 1990s the ENSO
variability has not been phase locked to the annual cycle, the predictability barrier has
been much weaker, and the overall forecast skill has been higher than the 1970s.

Wang (1995) showed that, priﬁﬂr to 1980, ENSO events started in the eastern Pacific
and migrated west, while those after 1980 started in the central Pacific and were stationary.
The 1970s period shows strong equatorial trade winds and low SSTs, while the 1980s show
weak trades and higher S5Ts (Wang 1995; Clarke and Lebedev 1996). This warming of
the eastern Pacific since 1980 and the weakening of the trade winds might decrease the
dependence of El Nifio onset on the phase of the annual cycle, and could also explain the
prolonged 1991-95 ‘warm event’.

For the mnproved Cane~Zebiak model (Chen ef al. 1993), the model-forecast skill
increased for the 1980s but not for the 1970s. Because the 1980s had less of a persistence
barrier than the 1970s, one would expect that an increase in forecast skill for the 1980s
would decrease the apparent strength of the spring barrier for the entire 1972-92 period,
as was found in their results.

The presence of the persistence barrier and the interdecadal changes in variance have
three implhications for ENSO modelling:

(1) claims of significant improvements in ENSO forecasting must be related to per-
sistence and variance during the particular time period;

(11) the current persistence barrier strength and the ENSO variance should be used
to establish confidence levels for ENSO forecasts; and

(111} the causes of interdecadal changes in predictive skill and variance should be
identified, and if possible, incorporated into coupled ocean—atmosphere models.
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It is hoped that through the use of measures of the persistence and variance, it will be
possible to improve the reliability and extent of ENSO forecasts.

7. CONCLUSIONS

A predictability barrier has been shown to exist in statistical analyses of ENSQ vari-
ability. The barrier is seen as a persistence drop-off during the spring (March-May) in
statistical analyses, and as a forecast-skill decline in many numerical models (Barnston
et al. 1994), The barrier’s existence has been questioned as an artifact of the statistical
analysis, with the suggestion that the annual cycle of ENSO variance is responsible for the
annual cycle of skill (Xue e al. 1994).

Using simple statistical models of ENSO indices, it was shown that the annual cycle
of the signal-to-noise ratio is responsible for the persistence barrier. The phase locking of
ENSO to the annual cycle is the cause of the persistence batrier, while the minimum in
variance in spring is a result of this phase locking.

The strength of the persistence barrier and the ENSO variance were shown to vary
on interdecadal time-scales. The changes in ENSO variance were shown to be correlated
to changes in Indian monsoon rainfall variance. From 1871 to 1920 and 1960 to 1977 the
ENSO variance was high and the persistence barrier was strong, while from 1921 to 1950
the ENSO variance was low and the persistence barrier was weak. Finally, from 1960 to
1977 the persistence barrier was strong and the ENSO events were phase locked to the
annual cycle, while from 1978 to 1993 the persistence barrier was weak and the ENSO
events showed little phase locking.

Areas of future research include quantifying the relationship between the persistence
barrier in ENSO indices and model-forecast skill, defining useful confidence levels for
ENSO forecasts, and identifying the causes of interdecadal changes in the coupled ocean-
atmosphere system.

ACKNOWLEDGEMENTS

Thanks to Drs G. Compo, R. Tomas and J. Weiss of PAOS, and Dr C. Penland of
CDC for many useful discussions on predictability and wavelet analysis. Computing was
done at the PAOS Computer Facility. This work was funded by grant NAS6GP0230 of the
NOAA Office of Global Programs.

APPENDIX

The monthly persistence of a time series X, is defined as the covariance of the two
sets of months divided by their standard deviations. For months m and m + k, where & 1s
the lag, the persistence is thus:

2
93
P (k) = R (A.1)

Om Gtk

The covariance and variance are at fixed phase with respect to the annual cycle, 1.e.

1 5. |
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where we have assumed that the monthly means of X, are zero: n is the year, while 7 is
the time index such that ¢ = 12n 4+ m. For the autoregressive model, X, = o, X;_; + Z,,
the monthly variance is:

o) =0l +aiol (A.4)
where o7, is the variance for the mth month of the noise and, to eliminate the cross term,
we have used the assumption that the noise is uncorrelated with itself.

Using recursive substitution, (A.4) can be rewritten as:

16

2 2 2.2 2.2 2 2 2

T ™ Oz + amﬁmel + Q1 C 72 +...t O rm—11 H am“j
iy

+ Ao, (A.5)

where A = ]‘[}f__{} «; is a constant equal to the product of all 12 AR coefficients. In the

last term in (A.5) we have o_,, = o and the recursion repeats itself, with each set of 12

terms reduced by another factor of A%, Note also that there are twelve of these equations,
one for each month. For convergence we require A < 1, and the infinite sums in A? can
be reduced as:

1 (3] m’ ~1
z Z g
a, == Y E O e ! I Uy - (A.6)
' =() F=ti

where H}:G a,_; = 1. Thus the monthly variance of our model is a combination of all the
previous noise variances weighted by the AR coefficients.
To derive the covariance, the time series (1) is first rewritten as:

k
Xiznimik = Lizntmsk + ¥k Lizntmrk-1 + « o o+ Xiongm H Umtj - (A7)
j=1

When this is substituted into (A.2) all of the noise terms are eliminated while the X 2,
term gives:

2 2
Uk — O n Gt j - (A.8)

j=1
Substituting (A.8) into (A.1) gives the persistence for the AR model,

G
Po(k) = —" T oty , (A.9)

with the monthly variances given by (A.6). The persistence for the ‘cosine’ model of (4)
can be derived in a similar manner,
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