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Abstract 1 

 This analysis examines the predictability of several key forecasting parameters using the 2 

ECMWF Variable Ensemble Prediction System (VarEPS) for tropical cyclones (TCs) in the 3 

North Indian Ocean (NIO) including: tropical cyclone genesis, pre-genesis and post-genesis track 4 

and intensity projections and regional outlooks of tropical cyclone activity for the Arabian Sea 5 

and the Bay of Bengal.  Based on the evaluation period from 2007 to 2010, the VarEPS TC 6 

genesis forecasts demonstrate low false alarm rates and moderate to high probabilities of 7 

detection for lead-times of one to seven days.   In addition, VarEPS pre-genesis track forecasts 8 

on average perform better than VarEPS post-genesis forecasts through 120 hrs and feature a total 9 

track error growth of 41 nm per day.  The VarEPS provides superior post-genesis track forecasts 10 

for lead-times greater than 12 hrs compared to other models including: UKMET, NOGAPS, and 11 

GFS, and slightly lower track errors than the Joint Typhoon Warning Center.  We conclude with 12 

a discussion of how the VarEPS can provide much of this extended predictability in a 13 

probabilistic framework for the region.14 
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1. Introduction: 15 

      Tropical cyclones (TCs) in the North Indian Ocean have a profound impact on the littoral 16 

countries of the Arabian Sea and the Bay of Bengal.  The combination of a shallow coastal plain 17 

along with a thermodynamically favorable environment allow TCs to impart high surface winds, 18 

torrential rains and significant wave heights (wave setup plus storm surge) as these systems 19 

move inland.  In addition, the world’s  highest  population density coupled with low 20 

socioeconomic conditions in the region has resulted in several landfalling TCs becoming 21 

devastating natural disasters.  In fact, eight of the ten deadliest TCs of all time have occurred in 22 

the Bay of Bengal and the Arabian Sea with five impacting Bangladesh and three making 23 

landfall in India (WMO-TD No. 84).  Furthermore, the highest storm tide ever recorded by a TC 24 

(45 feet) occurred in the North Indian Ocean near the Meghna Estuary, Bangladesh in 1876 25 

(WMO-TD No. 84). These occurrences highlight the need to provide regional governments and 26 

populace in the region as much advance warning as possible. 27 

  The Indian Meteorological Department (IMD), which is the WMO–designated Regional 28 

Specialized Meteorological Centre (RSMC), provides the official tropical cyclone forecasts and 29 

warnings in the North Indian Ocean.  As mandated by the WMO, the IMD is required to 30 

coordinate and release their forecasts daily with each member country within the North Indian 31 

Ocean.  However, ultimate responsibility for forecast development and warning dissemination 32 

lies  with  each  country’s  national  meteorological  service.    As  part  of  the  daily  operational  33 

procedure when a TC is not present in the region, the IMD is required to prepare a daily tropical 34 

weather outlook, which assesses the possibility of tropical depression development in the Bay of 35 

Bengal  and  the  Arabian  Sea.    Unlike  the  National  Hurricane  Center’s  Tropical  Weather  Outlook,  36 

which provides the likelihood of TC genesis during the next 48 hours (Rappaport et al. 2009), the 37 
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WMO provides no mandatory time constraint for this outlook product as the forecast time period 38 

is determined separately by each RSMC.  In addition, this product does not provide any 39 

quantitative, probabilistic information about the potential for tropical cyclone formation or the 40 

track for the system if formation occurs. 41 

 After a TC has reached depression status, the IMD begins issuing forecast advisories, which 42 

describes the system’s past movement, current location and intensity and its future location, 43 

translation speed, wind intensity, maximum average surface wind speed including the highest 44 

surface wind gust.  However, the IMD does not produce storm surge forecasts, even though this 45 

region has historically experienced devastating impacts from TC-induced storm surge (Webster 46 

2008); storm surge forecasts remain the  responsibility  of  each  country’s  national  meteorological 47 

service (WMO-TD No. 48).  In addition, the WMO only requires that these forecasts cover a 48 

time horizon of three days, while most operational numerical guidance in other basins spans a 49 

five-day forecast window (Rappaport et al. 2009).  50 

 A comprehensive literature review of American Geophysical Union and American 51 

Meteorological Society journals found no articles published in the last five years that examine 52 

the predictability of NIO TCs using the latest generation of global numerical weather prediction 53 

systems.  In addition, very few studies have been devoted to assessing the performance of 54 

ensemble prediction systems for tropical cyclones.  Recently, Dupont et al. (2011) have assessed 55 

how well ensemble-based tropical cyclone track forecasts perform in the South Indian Ocean.  In 56 

particular, they show that calibrated probabilistic forecasts from the European Centre for 57 

Medium-Range Weather Forecasts (ECMWF) Variable Ensemble Prediction System (VarEPS) 58 

perform better than climatology in assessing track uncertainty for a lead-time of three days.  59 
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Results from this analysis has led RSMC La Réunion to develop their uncertainty cones using 60 

the VarEPS and to extend their track forecasts from a lead-time of three to five days.  61 

 The purpose of this study, similar to the Dupont et al. (2011) analysis, is to assess how well 62 

TC forecasts from the VarEPS perform in the North Indian Ocean for the period 2007–2010.  In 63 

essence, forecast performance will be evaluated through an assessment of probabilistic tropical 64 

cyclone genesis forecasts, pre-genesis track and intensity forecasts.  This assessment is followed 65 

by a more typical comparison of post-genesis forecast track and intensity performance of the 66 

VarEPS relative to other global modeling forecast systems.  After evaluating the performance of 67 

TC genesis, track, and intensity forecasts from the VarEPS in Section 3, recommendations on 68 

how this model guidance may be used to produce extended-range probabilistic tropical cyclone 69 

forecasts are presented in Section 4. 70 

2. Data and Methods 71 

a) ECMWF Variable Ensemble Prediction System 72 

 The predictability of tropical cyclones in the North Indian Ocean is evaluated using the 73 

ECMWF VarEPS (hereafter; VarEPS).  During the period 2007–2010, the VarEPS has 74 

undergone a number of important changes1 that include increasing the horizontal and vertical 75 

resolution of the modeling system, expanding data assimilation procedures to include a greater 76 

number of satellite radiance measurements, updating model physics (including cumulus 77 

convection parameterization schemes) and changing how initial and stochastic perturbations are 78 

generated using singular vectors.  79 

 As of 26 January 2010, the VarEPS includes the ECMWF global model that is run at TL1279 80 

spectral truncation (horizontal resolution ~ 16 km) with 91 vertical levels out to ten days along 81 

                                                 
1 A complete description of these changes may be found at: 
http://www.ecmwf.int/products/data/technical/model_id/index.html. 
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with 51 ensemble members (50 perturbed members  + 1 control run) at TL639 spectral truncation 82 

(horizontal resolution ~ 32 km) with 62 vertical levels.  For days 11–15, the 51-member 83 

ensemble is processed at a reduced TL319 spectral truncation (horizontal resolution about 63 84 

km).   85 

 To represent the uncertainty in initial conditions, ensemble perturbations are constructed 86 

using singular vectors which capture the fastest growing errors in the first 48 hours (Buizza and 87 

Palmer 1995).  Stochastic perturbations are also added during the model integration to account 88 

for the uncertainty in parameterized physical processes.  Five additional singular vectors are 89 

computed and perturbed in the six grid spaces enclosing each TC using a diabatic, adjoint 90 

version of the ECMWF global atmospheric model at TL42 spectral truncation with 42 vertical 91 

levels (Barkmeijer et al. 2001, Puri et al. 2001).  The 15-day VarEPS 00UTC forecasts for the 92 

period 1 January 2007 to 31 December 2010 were obtained through the THORPEX Interactive 93 

Grand Global Ensemble (TIGGE; http://tigge.ecmwf.int/) project where the North Indian Ocean 94 

domain included the region: 0–30N; 40–110E and were at a horizontal resolution of 0.25o x 95 

0.25o. 96 

b) Tropical Cyclone Tracking Scheme  97 

 To isolate tropical cyclones in the VarEPS analysis and forecast fields, we use a modified 98 

version of the Suzuki-Parker tracking scheme (Holland et al. 2010).  To increase the intensity 99 

retrievals from the VarEPS, 10 m winds are replaced with winds averaged in the lower 100 

troposphere (10 m, 925 hPa, and 850 hPa).  The tracking scheme processes each ensemble 101 

member for tropical cyclones by first identifying candidate vortices that exhibit a local minimum 102 

in mean sea level pressure.  This initial set of vortices is filtered by removing systems that do not 103 

have a maximum lower tropospheric wind speed greater than 16 kts (8.2 m s-1) and an 850 hPa 104 
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relative vorticity maximum greater than 1x10-4 s-1.  The next component of the tracking scheme 105 

confirms that each identified vortex possess a warm core as defined using the Hart (2003) phase-106 

space method.  The cyclone phase analysis quantifies the thermal structure by assessing the 107 

lower  to  middle  troposphere’s  thickness  gradient  across  the  cyclone  and  the  magnitude  of  the  108 

cyclone’s  lower  troposphere  and  middle  to  upper  troposphere’s  thermal  wind.   After the tracking 109 

scheme has been implemented for each ensemble member, any tracks that originate over land are 110 

removed unless the ensemble tracks are within 300 n mi of an observed tropical cyclone. 111 

Furthermore, all ensemble forecast tracks must have a lifetime of at least one day. The scheme 112 

does have limitations with respect to exceedances in lower troposphere winds and relative 113 

vorticity which can produce unrealistic track forecasts, such as in the vicinity of 10-17N; 40-114 

55W.  Accordingly, all ensemble tracks from this region were eliminated unless they were in 115 

association with an observed tropical cyclone. 116 

c) Filtering Tropical Cyclone Forecast Tracks and Determining False Alarms 117 

 After applying the tropical cyclone tracking scheme and post-processing routines to the 118 

VarEPS forecasts, a tropical cyclone filtering algorithm is used to determine which ensemble 119 

track forecasts for a particular VarEPS integration are associated with an observed tropical 120 

cyclone (Figure 1).  First, the starting time and initial position of each ensemble track forecast, 121 

Ej(xo, yo, to), is compared to the initial location and time of each observed tropical cyclone, Oj(xo, 122 

yo, to).  If the ensemble forecast track is within the spatial and temporal thresholds set by the 123 

filtering algorithm, then the ensemble forecast track is associated with an observed tropical 124 

cyclone.  The spatial limit is 500 n mi at to with an increase of 100 n mi for each 24 hour increase 125 

in forecast lead-time.  The temporal limit is  5 days at to with an increase of one day for each 24 126 

hour increase in forecast lead-time.  For ensemble track forecasts within the limits, these 127 
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forecasts are further subdivided into pre-genesis forecast tracks, EPRE-TC j(x), and post-genesis 128 

forecast tracks, EPOST-TC j(x).  If the ensemble forecast track precedes the date of observed 129 

tropical cyclone genesis, defined as the date when the first tropical depression advisory is issued 130 

by the Joint Typhoon Warning Center (JTWC), then the forecast track is classified as a pre-131 

genesis forecast track, EPRE-TC j(x).  Post-genesis forecasts tracks, EPOST-TC j(x), begin with the 132 

first tropical depression advisory and continue until the last tropical advisory has been issued for 133 

an observed tropical cyclone.   134 

 After determining which ensemble forecast tracks are associated with an observed tropical 135 

cyclone, there is an implication that all other ensemble forecast tracks must be false alarms.  136 

However, to take advantage of the probabilistic framework of the VarEPS, we have developed a 137 

false-alarm clustering algorithm such that a false alarm occurs for a particular model integration 138 

when a cluster of VarEPS ensembles produces a localized set (in space and time) of forecast 139 

tracks.  The method uses the spatial and temporal thresholds from the tropical cyclone filtering 140 

routine and “k–means clustering” (Mirkin 1996).  K-means clustering is an algorithm designed to 141 

divide a set of points (i.e. initial ensemble forecast coordinates) into k–clusters whose 142 

membership is based on the distance  between  each  ensemble’s  forecast  point  and  each  cluster’s  143 

mean or centroid location.  144 

 First, the definition of a false alarm cluster is when the normalized number of ensemble 145 

tracks within a cluster is in excess of this false alarm ensemble probability, PF.  The ensemble 146 

probability threshold, PF, is pre-defined by the user and should be determined based on the end-147 

user’s  needs  (i.e.  for  few false alarms, select a high PF).  Next, all ensemble tracks, Ej(x), for a 148 

particular model integration are compared with the set of ensemble forecast tracks that were 149 

defined as either pre-genesis, EPRE-TC j(x), or post-genesis, EPOST-TC j(x), tropical cyclone forecast 150 
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tracks.  Those ensemble forecast tracks that are not in the set of tropical cyclone forecast tracks 151 

become candidate false alarms, ECFA j(x), creating a new set of ensemble forecast tracks for 152 

further analysis, i.e. Ej(x)  ECFA j(x).  Thereafter, the clustering routine begins first with the 153 

assumption that all candidate false alarm tracks belong to the same cluster, i.e. k = 1, so that an 154 

ensemble mean initial location Fk(x0) and forecast time Fk(t0) is defined.  This coordinate 155 

information then becomes the “clustering point” that the false alarm filtering routine uses in 156 

conjunction with the spatial and temporal thresholds defined previously to determine which 157 

ensemble forecast tracks are close to the cluster’s  ensemble  mean  starting  time  and  initial  158 

location.  For ensemble forecast tracks that are not within the distance and time thresholds of the 159 

cluster, these tracks are removed from further false alarm consideration unless the number of 160 

clusters changes. 161 

 After the subset of false alarm ensemble forecasts for the cluster is identified (i.e., ECFA j(x) 162 

 EFAC j(x)), then if the total number of forecast tracks within this set is in excess of the false 163 

alarm ensemble threshold PF, then the process described previously is repeated except that the 164 

number of clusters is increased by one (k = 1  k = 2), so that now, two k-means clusters are 165 

created from the initial set of ensemble forecast tracks, ECFA j(x).  Each  cluster’s  mean coordinate 166 

information is then used in the false alarm filtering routine to identify which ensemble forecast 167 

tracks  are  within  the  cluster’s  starting time and initial location.  Afterwards, if ensemble track 168 

membership of both clusters is in excess of the false alarm probability threshold, then the 169 

complete process is repeated except that three clusters (k = 3) are defined.  This iterative process 170 

continues until the number of ensemble tracks for any cluster drops below the false alarm 171 

ensemble probability threshold.  When this occurs, the finalized number of false alarm clusters 172 

for a particular model integration is then k–1 clusters.  173 
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3. Results and Discussion 174 

     In Section 3a we present an analysis of the VarEPS predictions of tropical cyclone formation 175 

in the North Indian Ocean for the period 2007–2010.  The analysis is accomplished by evaluating 176 

the probability of detection and the false alarm rate as a function of forecast lead-time and 177 

increasing probability threshold.  We also include an evaluation of how well the pre-genesis 178 

tropical cyclone forecast tracks and intensities from the VarEPS perform relative to observations.  179 

In Section 3b, the forecast skill for track and intensity forecasts post-genesis is evaluated.  180 

Finally, in Section 3c we examine the regional predictability of TC activity in the North Indian 181 

Ocean by evaluating the VarEPS forecasts separately for the Arabian Sea and the Bay of Bengal.  182 

a) Tropical Cyclone Formation and Pre-genesis Forecasts 183 

 Figure 2a shows the spatial distribution of tropical cyclone forecast tracks for Severe Cyclone 184 

Nargis from the VarEPS initialized on 23 April 2008 00UTC, which is about four days prior to 185 

the initiation of tropical depression advisories by the JTWC.  This case illustrates some of the 186 

forecast information that is contained within the tropical cyclone VarEPS forecasts.  The VarEPS 187 

forecasts are in good agreement that the pre-tropical vortex that would become Nargis would 188 

reach advisory criteria around 27 April 2008 in the central Bay of Bengal.  Thereafter, based on 189 

forecasts on 23 April, the tropical cyclone is forecast to move generally towards the east-190 

northeast on a track that would cause the system to make landfall in Myanmar around 30 April or 191 

1 May with a high (60%+) probability as a hurricane and a much lower (5%) probability as a 192 

severe cyclone/major hurricane.  Nargis was observed to intensify to category 4 hurricane level 193 

on the Saffir-Simpson intensity scale with maximum sustained winds of 115 kts.  The system 194 

made landfall in southern Myanmar on 2 May 12UTC, propagating eastward across the 195 

Irrawaddy delta (Webster 2008).  The forecast performance of the VarEPS for Severe Cyclone 196 
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Nargis is exceptional in nearly all facets of prediction: tropical cyclone genesis was forecast 197 

correctly eight days in advance, ensemble mean track errors never exceeded 375 n mi even based 198 

on pre-genesis track forecasts, and intensity forecasts, although underestimated, indicated a 199 

moderate (30%+) probability of Nargis reaching hurricane intensity nearly six days in advance of 200 

TC formation.   201 

 A more systematic study of all tropical cyclones in the North Indian Ocean is now conducted 202 

to determine whether the Nargis forecast performance is characteristic of the VarEPS.  Figure 3 203 

is a relative operating characteristic (ROC) evaluation of the VarEPS forecasts for NIO tropical 204 

cyclone genesis using the metrics of probability of detection (POD; also known as hit rate) and 205 

false alarm rate (FAR; also known as probability of false detection) for all 23 tropical cyclones 206 

occurring during the 2007–2010 period using the false alarm clustering methodology from 207 

Section 2c.  The POD is a measure of the fraction of observed tropical cyclones where TC 208 

genesis was forecasted correctly relative to all observed TCs.  The FAR is the proportion of all 209 

forecasts where a forecast of TC genesis was issued and did not occur along with the number of 210 

correct rejections (i.e. TC genesis was not forecast to occur and it did not occur).  The false 211 

alarm rate should not be confused with the false alarm ratio, which is the proportion of all 212 

forecasts where TC formation is forecast to occur but did not (Barnes et al. 2009).  Since the 213 

false alarm rate is a function not only of the number of false alarms but also the number of 214 

correct rejections, the number of VarEPS forecasts included in this evaluation will modulate the 215 

false alarm rate mainly through the number of correct rejections.  If all VarEPS forecasts from 216 

2007–2010 are included, the false alarm rate as a function of forecast probability threshold is 217 

significantly lower than if only the months traditionally associated with NIO TC activity are 218 



 12 

included.  Therefore, for this analysis, the VarEPS evaluation is restricted to the months of April 219 

to June and August to December for the 2007–2010 period.   220 

 The POD and FAR statistics are also sensitive to the time window that is used for verification.  221 

For instance, if one were to verify all one-day lead-time TC genesis forecasts, but did not require 222 

that the VarEPS correctly forecast the actual date and time of TC genesis (i.e. a 360-hr time 223 

window is used), the POD would be much larger and the FAR much smaller than if a short 224 

window centered on the time of TC genesis is required.  Figure 3a-c shows the POD and FAR of 225 

the VarEPS forecasts using 48-hr, 96-hr, and 360-hr time windows calculated at a 10% forecast 226 

probability interval ranging from 0 to 100%.  The time window is defined with respect to the 227 

time of TC genesis, to (e.g. a 48-hr window is  24 hrs from to).  Using the 48-hr time window, 228 

the VarEPS forecasts for lead-times of one to five days in advance exhibit moderate probabilities 229 

of detection (0.4 to 0.7) with very low false alarm rates (0.1–0.2) mainly for forecast probability 230 

thresholds of 10–40% (Figure 3a).  Although the false alarm rate never exceeds 0.2 even at 231 

extended lead-times, VarEPS forecasts made over seven days in advance tend to have low POD 232 

once forecast probability thresholds surpass 20%.  This observation reflects a decreased 233 

frequency of VarEPS forecasts at long lead-times where the forecast probability exceeds 20%.  If 234 

a 96-hr time window is used, the probability of detection of the VarEPS on average increases by 235 

about 0.2 and the false alarm rate by about 0.1 for forecasts of TC genesis made less than seven 236 

days in advance (Figure 3b).  Forecasts greater than seven days in advance benefit even more 237 

from the increase in time window, as the POD for a ten-day lead-time forecast increases on 238 

average by about 0.15, and the FAR increases by only 0.05 for a forecast probability threshold of 239 

10–30%.  Finally, using the full 15-day period of the VarEPS to define the time window of TC 240 
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genesis, the average POD exceeds 0.7 and the FAR ranges from 0.3 to 0.6 based on forecast 241 

probability thresholds of 10–40% (Figure 3c).   242 

 A key component of any operational forecasting system for TC genesis is knowing what 243 

combination of forecast lead-time and time window maximizes the probability of detection while 244 

minimizing the false alarm rate. If the ROC score is calculated as a function of forecast lead-time 245 

for various time windows, the optimum time window is found by determining at which time 246 

window the ROC score obtains a maximum value.  It should be noted that the area under the 247 

ROC curve, known as the ROC score, varies from 0 to 1, where 0.5 indicates no forecast skill, 248 

and a value of 1 indicates a perfect forecast system (Mason and Graham 1999).  For TC genesis 249 

forecasts with lead-times of one to five days in advance, a 48-hr time window around the 250 

forecast date of genesis maximizes the probability of detection while minimizing the false alarm 251 

rate.  For TC genesis forecasts beyond a lead-time of five days, the ROC score is maximized if 252 

the full 15-days of the VarEPS integration is used to determine the forecast time of TC genesis. 253 

 The following analysis allows a greater understanding of the NIO false alarms that occur in 254 

the VarEPS.  The spatial distribution  of  each  false  alarm  cluster’s  ensemble starting location 255 

from 2007 to 2010 is shown in Figure 4a.  Although the false alarms in the Arabian Sea and 256 

southern Bay of Bengal tend to be distributed uniformly during the 2007–2010 period, there is a 257 

relatively high concentration of false alarm clusters that stretch from the northwestern Bay of 258 

Bengal into the extreme northeastern Arabian Sea.  The false alarm clusters in the northwestern 259 

Bay of Bengal tend to occur in a localized region where there is a large gradient in topography 260 

between the Bay of Bengal and the northern portion of the Eastern Ghats mountains.  This 261 

concentration of false alarms may be defining the preferential track of pre-existing cyclonic 262 

vortices that move through the Bay of Bengal and into India but never become TCs.  The 263 
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localized nature of this false alarm concentration may indicate a relationship between current 264 

convective parameterization schemes, topography, and the forecast frequency of TC genesis in 265 

the VarEPS. 266 

 Figure 4b shows the false alarm ratio for the period 2007–2010 with Figure 4c indicating the 267 

cumulative distribution function of all false alarms as a function of forecast lead-time.  The false 268 

alarm ratio obtains a peak value around 0.5 for a forecast probability level of 10% and decays 269 

nearly exponentially as the forecast probability threshold increases.  At a forecast probability 270 

threshold of 25%, the false alarm ratio and the forecast probability threshold are equivalent.  271 

Figure 4c shows that around half of all false alarms during the 2007–2010 period occurred at a 272 

forecast lead-time of 120 to 240 hours. 273 

 We now evaluate how well the VarEPS forecasts perform for track and intensity prior to TC 274 

genesis.  The average ensemble mean track error at a lead-time of 24 hrs is 82 n mi with a 50% 275 

interval of 51–106 n mi, and at 120 hrs it is 224 n mi with a 50% interval of 116–292 n mi for all 276 

pre-genesis VarEPS forecasts during the period 2007–2010 (Figure 5a).  From a lead-time of 24 277 

hrs to 240 hrs, the mean ensemble track error growth is nearly linear at 41 n mi per day, so that 278 

by a lead-time of 240 hrs, the total mean ensemble error is 409 n mi with a 50% percent interval 279 

of 186–498 n mi.  In addition, the ensemble track error distribution becomes increasingly non-280 

Gaussian as forecast lead-times increases.  The implication is that beyond 72 hrs, the mean 281 

ensemble track error grows larger than the maximum likelihood of the pre-genesis track error 282 

distribution.  Figure 5a also shows that the VarEPS track forecasts perform similarly regardless 283 

of year, indicating that even though the VarEPS has undergone several major changes during the 284 

2007-2010 period, there has not been a substantial change in forecast track performance in the 285 

NIO.  To place these pre-genesis track errors in perspective, the Indian Meteorological 286 
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Department’s  post-genesis track errors at a lead-time of 48 hrs and 72 hrs typically average 162 n 287 

mi and 270 n mi, respectively2.  This is equivalent to VarEPS ensemble mean pre-genesis 288 

forecasts at lead-times of 90 and 138 hours, respectively. 289 

 Figure 5b shows the absolute intensity error for all pre-genesis ensemble forecasts during the 290 

period 2007–2010.   Forecasts with a lead-time of 24 hrs have a mean absolute intensity error of 291 

11 kts (6 m s-1) with a 50% percent interval of 6–15 kts (3–8 m s-1), and by 120 hrs the mean 292 

absolute intensity error grows to 23 kts (12 m s-1) with a 50% interval of 7–27 kts (4–15 m s-1).  293 

However, unlike the pre-genesis TC track forecasts where the 95th percentile interval is 294 

approximately 2.5 times as large as the mean ensemble track error at 120 hrs, the 95th percentile 295 

interval for absolute intensity error is 3.4 times as large, reflecting a substantial negative intensity 296 

bias for several of the most intense tropical cyclones during the 2007–2010 period (not shown).  297 

In terms of the interannual variation in forecast performance of intensity, Figure 5b indicates that 298 

the VarEPS forecasts for 2008–2010 have on average performed substantially better than the 299 

VarEPS forecasts from 2007, with 2008 and 2009 showing three times the improvement relative 300 

to 2007.  This marked change in forecast skill of intensity may be due in part to the horizontal 301 

and vertical resolution increase that occurred after 2007 in the VarEPS. 302 

 Forecasting tropical cyclone formation requires an estimate of not only the likely location of 303 

TC genesis, but also the time when a system is likely to reach advisory thresholds.  Figure 5c 304 

shows  the  relative  error  (in  days)  in  the  VarEPS’s  forecast  timing  of  TC  genesis.    Positive  values  305 

indicate the VarEPS TC genesis forecasts occur sooner than observations, while negative values 306 

indicate a later genesis date.  For the first 120 hours, the ensemble spread becomes more 307 

dispersive as forecast lead-time increases, such that at a lead-time of 24 hours, the VarEPS mean 308 

                                                 
2 http://www.imd.gov.in/section/nhac/dynamic/faq/FAQP.htm 
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ensemble error is -0.5 days with a 50% ensemble interval of -1 to 0.5 days.  By 120 hrs, the 309 

VarEPS mean ensemble error is 0.5 days but with a 50% ensemble interval of -0.9 to 1.9 days.  310 

After a lead-time of 168 hrs, the VarEPS mean ensemble bias begins to increase more rapidly but 311 

with little change in ensemble spread, such that at 240 hrs the VarEPS mean ensemble bias 312 

grows to 2.2 days with a 50% interval of 0.8 to 3.3 days.  Although the ensemble spread is 313 

several times larger than the VarEPS mean error, the systematic growth in the mean bias as a 314 

function of forecast lead-time is a robust feature of Figure 5c.  If one compares the mean error 315 

for the first 72 hours (-0.2 days) relative to 168–240 hours (1.3 days), this difference is 316 

statistically significant at the 99% confidence level using a bootstrap resampling test. 317 

 One possible explanation of why  the  VarEPS’s  forecasts  for  timing  of  TC  genesis  are  well-318 

constrained through a lead-time of 168 hrs is the dispersion or spread among  the  VarEPS’  319 

ensembles.  Figure 5d shows the distribution of ensemble spread in genesis time for each TC 320 

from 2007 to 2010 as a function of forecast lead-time.  The ensemble spread is calculated as the 321 

difference in time (in days) of TC genesis between the earliest and latest ensemble member.  As 322 

shown in Figure 5d, the ensemble spread in TC genesis time grows rapidly for the first seven 323 

days of forecast lead-time, then begins to grow less rapidly reaching a peak spread around 12 324 

days after a forecast lead-time of 168 hrs. While the 15-day integration period has the effect of 325 

artificially limiting the spread, the limited TC sample size from 2007-2010 makes it impossible 326 

to evaluate the statistical significance of the bias (c.f. Figure 5c).   327 

b) Post-genesis Tropical Cyclone Forecasts  328 

     Figure 6a shows the error distribution of all VarEPS track forecasts during the 2007–2010 329 

period indicating how the total track error statistic varies as a function of lead-time after TC 330 

genesis has occurred.  From Figure 6a it is seen that at a lead-time of 24 hrs, the mean track error 331 
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is 71 n mi with a 50% interval of 35–98 n mi. From 24 to 120 hrs, the VarEPS track errors 332 

increase linearly at a rate of 58 n mi day-1 such that by a lead-time of 120 hrs, the mean track 333 

error is 325 n mi with a 50% interval of 148–427 n mi.  When compared to the pre-genesis track 334 

forecasts, the post-genesis track errors are larger by 15% to 30% depending on the lead-time and 335 

quantile considered of the track error distribution.  Although a topic of future work, this finding 336 

suggests that the VarEPS post-genesis procedure of increasing ensemble spread through moist 337 

singular vectors in a sub-region enclosing a TC leads to greater track forecast degradation 338 

through a lead-time of 120 hrs than if the procedure was not used.  Similar to the VarEPS pre-339 

genesis track forecasts, the VarEPS post-genesis track forecasts show no significant 340 

improvement in annual performance for the period 2007–2010.   341 

 To  place  the  VarEPS’s  post-genesis track forecasts in perspective, Figure 6b compares the 342 

VarEPS control and ensemble mean forecasts with other forecasting agencies including the 343 

JTWC,  the  U.S.  Navy’s  version  of  the  GFDL  (GFDN),  the  United  Kingdom  Meteorological  344 

Office’s global model (UKMET), the National Center for Environmental  Prediction’s  Global 345 

Forecast System  model  (GFS)  and  the  U.S.  Navy’s  NOGAPS  model.    Since  these  forecasts  were  346 

obtained  through  the  U.S  Navy’s  Automated  Tropical  Cyclone  Forecasting  System,  most  of the 347 

forecast guidance is limited to 72-hrs,  similar  to  the  temporal  limit  of  the  JTWC’s  forecasts  prior  348 

to 2010.  Although the VarEPS control and ensemble mean forecasts on average begin with the 349 

largest initial track error, 12-hrs later and beyond the VarEPS control and ensemble mean exhibit 350 

the lowest track errors among all other model forecasts.  In addition, the VarEPS control and 351 

ensemble mean on average exhibit slightly lower track errors than the JTWC through a lead-time 352 

of 72-hrs, although this difference is not statistically significant at the 95% confidence level.  353 

Relative  to  the  next  best  performing  forecast  model,  the  VarEPS  ensemble  mean’s  24-hr, 48-hr, 354 
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and 72-hr  track  forecast  error  is  on  average  10%,  19%,  and  27%  smaller  than  NCEP’s  GFS.    355 

Since the linear track error growth per day for the VarEPS ensemble mean (41 n mi/day) is 356 

considerably smaller than the GFS (66 n mi/day), greater track forecast utility is obtained at 357 

longer lead-times with the VarEPS in comparison to other model forecasts.  358 

 Figure 6c shows the distribution of absolute intensity error for all VarEPS post-genesis 359 

forecasts during the 2007–2010 period.  At the analysis time step (0 hrs), the mean absolute 360 

intensity error of all VarEPS forecasts is high at 21 kts (11 m s-1) with a 50% interval of 5–27 kts 361 

(3–14 m s-1).  By a lead-time of 72 hrs the mean absolute intensity error reaches 28 kts (15 m s-1) 362 

with a 50% interval of 8–47 kts (4–25 m s-1), and by 108 hrs, the VarEPS mean forecasts reach 363 

their maximum intensity error of 32 kts (18 m s-1) with a 50% interval of 10–46 kts (6–25 m s-1).  364 

Unlike the intensity error statistics for the pre-genesis VarEPS forecasts, the interannual 365 

variation of post-genesis intensity forecasts reflects a more substantial improvement for the 366 

2008–2010 period compared to 2007.  Using the first 72 hrs of lead-time as a reference, an 367 

average improvement of 67% relative to 2007 is evident.  Finally, Figure 6d compares the 368 

VarEPS control and ensemble mean absolute intensity error to other forecast models and the 369 

JTWC after removing the initial intensity bias.  Generally, for the 2007–2010 period, the VarEPS 370 

begins with much higher initial intensity error than any other forecast model (not shown).  In 371 

addition, the growth rate in mean absolute intensity error among the global forecast models is 372 

similar through the first 48 hours.  Overall, the  Navy’s  version  of  the  GFDL  features  the  lowest  373 

mean absolute intensity error among the models considered here and is very similar to the 374 

forecast performance of the JTWC beyond 36 hrs. 375 

c) Regional Outlooks of Tropical Cyclone Activity 376 
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 We  now  consider  the  VarEPS’s  ability  to  produce  skillful  regional  outlooks  of  TC  activity  377 

(i.e. the probability that a tropical depression strength or greater vortex will be located within a 378 

region) by dividing the North Indian Ocean into two sub-domains: the Arabian Sea and the Bay 379 

of Bengal. Figure 7a shows the ROC for the Arabian Sea using the VarEPS forecasts from 380 

April–June and August–December of 2007–2010.  Similar to the ROC analysis of the VarEPS 381 

TC genesis forecasts, the VarEPS forecasts for TC activity in the Arabian Sea exhibit moderate 382 

probabilities of detection with very low false alarm rates, even as the forecast decision threshold 383 

decreases to lower probabilities.  As forecast lead-time increases, a transition in forecast 384 

performance occurs after a lead-time of ten days.  The ROC curve for forecasts with lead-times 385 

five to ten days in advance have similar POD and FAR with forecasts at shorter lead-times.  386 

However, comparing the ROC curve for forecasts with lead-times of ten to fifteen days relative 387 

to five to ten days in advance reveals a large decrease in the probability of detection although the 388 

false alarm rate essentially remains constant.  From this analysis it is unclear whether this 389 

decrease in POD is due an inherent lack of predictability at this longer-time scale or is 390 

functionally dependent on the current configuration of the VarEPS with reduced horizontal 391 

resolution at lead-times greater than 240 hrs.  However, it is clear that the current configuration 392 

of the VarEPS is incapable of generating forecast probabilities of TC activity in the Arabian Sea 393 

greater than 30% for lead-times of ten to fifteen days, which is one reason why the POD is so 394 

much lower than for forecasts with lead-times less than ten days. 395 

 Figure 7b shows the ROC for the Bay of Bengal using the same set of VarEPS forecasts as in 396 

Figure 7a.    Relative  to  the  Arabian  Sea,  the  VarEPS’s  forecasts  of  TC  activity  in  the  Bay  of  397 

Bengal have lower probabilities of detection for shorter lead-times, but higher POD values at 398 

longer lead-times.  Although for lead-times of ten to fifteen days in advance, forecasts in the Bay 399 
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of Bengal also exhibit slightly higher false alarm rates than the Arabian Sea, the relative change 400 

in POD compared with FAR indicates that overall the VarEPS forecasts are more skillful in the 401 

Bay of Bengal than the Arabian Sea at extended lead-times. 402 

 To quantify how well the VarEPS forecasts of TC activity perform in the Arabian Sea and 403 

the Bay of Bengal as a function of forecast lead-time, two skill score metrics are used: the Brier 404 

skill score (BSS) and the ROC score.  The BSS measures the accuracy or relative skill of a 405 

forecast over climatology by comparing whether or not an event is forecast to occur relative to 406 

observations.  A BSS greater than zero implies forecast skill beyond climatology.  In this 407 

analysis, a 30-yr climatology (1980–2009) of tropical cyclones was developed from the JTWC 408 

best-track dataset.  Although the BSS metric reveals how skillful a forecast system is relative to 409 

climatology, the BSS is regarded as a harsh forecast standard, as it can often hide useful 410 

formation information even when the BSS is less than 0 (Mason 2004).  Therefore, we use the 411 

ROC score as another skill score metric.  Table 1 provides the BSS and ROC scores for the 412 

Arabian Sea and the Bay of Bengal based on the VarEPS forecasts from April–June and August–413 

December from 2007 to 2010 as a function of forecast lead-time.  It should be noted that a 414 

BSS/ROC score of one indicates a perfect set of forecasts.  To establish statistical significance at 415 

the 95% confidence level, a nonparametric bootstrap test was used.  In this case, statistical 416 

significance of the BSS (ROC score) is determined if the 95% confidence interval of the BSS 417 

exceeds 0 (0.50).  From Table 1, the BSS metric indicates that the VarEPS forecasts for TC 418 

activity in the Arabian Sea are skillful beyond climatology for forecasts up to ten days in 419 

advance.  Beyond ten days, however, forecasts for TC activity are not skillful relative to 420 

climatology.  In contrast to the BSS metric, the ROC score is well-above 0.50 out to 15 days, 421 
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which indicates that the VarEPS provides skillful forecasts of TC activity through two weeks in 422 

the Arabian Sea.   423 

 Table 1 also provides the BSS and ROC scores for TC forecasts in the Bay of Bengal.  424 

According to the BSS, forecasts less than five days in advance in the Bay of Bengal are nearly 425 

60% less skillful than in the Arabian Sea, which is likely due to the higher frequency of false 426 

alarms in the Bay of Bengal (c.f. Figure 4c and Figure 7a-b).  However, consistent with the ROC 427 

interpretation of Figure 7a-b, the BSS is positive and statistically greater than 0 at the 95% 428 

confidence level through a lead-time of ten days.  For the ten to fifteen day forecast period, the 429 

BSS indicates that the VarEPS performs as well as climatology in the Bay of Bengal.  Although 430 

TC forecasts from the VarEPS in the Arabian Sea are more skillful than those in the Bay of 431 

Bengal for lead-times less than ten days, this result does not hold at longer time scales where the 432 

Bay of Bengal forecasts have on average an 18% higher BSS.  If the ROC score metric is used to 433 

determine forecast skill, the VarEPS forecasts for TCs in the Bay of Bengal are skillful through 434 

fifteen days, which is similar to the ROC score results for the Arabian Sea. 435 

 The results in Table 1 may be compared to a similar analysis that Belanger et al. (2010) 436 

performed for the tropical North Atlantic using the ECMWF Monthly Forecast System during 437 

the hurricane seasons of 2008 and 2009.  They find that the most predictable region for TC 438 

activity in the North Atlantic is the Main Development Region, as ROC scores for forecast days 439 

8-14 are 0.81 and 0.75 for forecast days 15-21.  Relative to these findings, the results presented 440 

here indicate similar predictability in the Bay of Bengal as in the North Atlantic Main 441 

Development Region, with TC predictability in the Arabian Sea more characteristic of that of the 442 

Caribbean Sea at extended forecast lead-times.  Belanger et al. (2010) attribute the predictability 443 

at these time scales to the ability of the VarEPS to predict accurately the magnitude of deep-layer 444 
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(850-200 hPa) vertical wind shear as well as the correct frequency of pre-existing cyclonic 445 

vortices such as African easterly waves.  However unlike the Caribbean Sea, where predictability 446 

is modulated largely by the variability in intensity and location of the tropical upper-tropospheric 447 

trough, in the Arabian Sea it is likely the combination of dry environmental air and changes in 448 

deep-layer vertical wind shear in association with the onset and end of the south Asian monsoon.  449 

In addition, Vitart (2009) along with Belanger et al. (2010) show that regional TC predictability 450 

in the tropical Atlantic is strongly modulated by the phase and amplitude of the Madden-Julian 451 

Oscillation (MJO).  Given the more pronounced impact that the MJO has in the NIO (Webster 452 

and Hoyos 2004, Hoyos and Webster 2007), we expect this finding to be even more applicable to 453 

TCs in the NIO. 454 

4. Summary and Conclusions 455 

 The performance of the ECMWF VarEPS in forecasting tropical cyclones in the North Indian 456 

Ocean has been examined for the period 2007–2010.  The VarEPS is shown to have low false 457 

alarm rates and moderate to high probabilities of detection for forecast lead-times through seven 458 

days.  The VarEPS TC genesis forecast performance is sensitive to the time window that is used 459 

to define whether or not an event is forecast to occur.  Based on an optimization procedure to 460 

achieve the highest ROC score (i.e. maximizing probability of detection and minimizing the false 461 

alarm rate), the optimum forecasting combination to predict TC genesis is a 48-hr time window 462 

for a forecast lead-time through five days.  Thereafter, the full time period of the VarEPS 463 

integration should be used to generate TC genesis forecasts five to ten days in advance.   464 

 Analysis of the VarEPS forecasts from 2007 to 2010 shows that tropical cyclone track 465 

forecasts made prior to TC genesis perform 15–30% better than track forecasts produced after 466 

TC genesis has occurred.  For a lead-time of 24 to 240 hours, the total mean track error grew at a 467 



 23 

rate 41 n mi per day such that by a lead-time of 120 hours (240 hours), the average track error of 468 

all VarEPS forecast is 224 n mi (409 n mi) with a 50% interval of 116–324 n mi (186–498 n mi).     469 

The performance of these track forecasts prior to TC genesis is remarkable considering that the 470 

Indian  Meteorological  Department’s  average 72-hr forecast track error is 500 km (270 n mi), and 471 

these forecasts are issued only after TC genesis has occurred.  In terms of post-genesis TC track 472 

forecasting, the VarEPS forecasts for a lead-time of 24 hrs average 71 n mi with a 50% interval 473 

of 35 to 98 n mi, and by 120 hours the mean track error is 325 n mi with a 50% interval of 148–474 

427.  In addition, both the pre-genesis and post-genesis track analyses show that the distribution 475 

of ensemble track error becomes increasingly non-Gaussian as forecast lead-time increases. 476 

Therefore, to maximize forecast track predictability using the VarEPS, the full distribution of 477 

VarEPS track forecasts should be considered and not the mean VarEPS alone.  Although the 478 

VarEPS control and ensemble mean forecast on average starts with the largest initial track error 479 

when compared to other forecast models (i.e. NOGAPS, UKMET, GFS, GFDN), for forecast 480 

lead-times 12-hrs later and beyond, the VarEPS control and ensemble mean show the lowest 481 

track errors among all other model forecasts.  In fact, the VarEPS control and ensemble mean on 482 

average exhibit slightly lower track errors than the JTWC through a lead-time of 72-hrs.  Since 483 

these forecasts are not bias-adjusted to account for the difference in the starting location of the 484 

observed TC relative to the initialized location in the VarEPS model or systematic along-track or 485 

cross-track biases, additional statistical post-processing steps could be applied to significantly 486 

lower the average track errors of the VarEPS at extended lead-times. 487 

 In addition, the VarEPS track forecasts were translated into regional outlooks to provide the 488 

likelihood of TC activity in the Arabian Sea and the Bay of Bengal.  Skill score metrics including 489 

the Brier Skill Score and the Relative Operating Characteristic Score were used to evaluate the 490 
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VarEPS forecasts.  The BSS statistic indicates that the VarEPS TC forecasts for the Arabian Sea 491 

and Bay of Bengal are predictable relative to climatology through ten days, whereas the ROC 492 

score statistic show that TC activity for both regions are predictable through two weeks.   493 

 Based on this evaluation of the VarEPS TC forecasts, it appears feasible for warning 494 

agencies in the NIO to begin providing a probabilistic TC formation outlook that assesses the 495 

potential for TC development through a lead-time of seven days.  When the probability of 496 

formation is within moderate (30–60%)  levels,  the  VarEPS’s  probability  of  detection  will  497 

average around 60% with a false alarm rate of about 30% for a lead-time of seven days.  In 498 

addition, since the distribution of the VarEPS forecasts provides a dynamical measure of the 499 

forecast  uncertainty  in  the  atmosphere’s  future  state (Dupont et al. 2011), some TCs will be more 500 

predictable than others.  Therefore, operational forecasts could include a probabilistic outlook 501 

including both TC track and intensity derived from the VarEPS.  Although the VarEPS tends to 502 

be slightly underdispersive at longer forecast lead-times (Majumdar et al. 2010), some additional 503 

statistical post-processing steps including bias-correction and probability calibration could be 504 

incorporated to ensure that the final forecast track and intensity probabilities are well-505 

conditioned relative to observations.  506 

 507 

Acknowledgments 508 

The authors would like to thank the TIGGE project for supplying the ECMWF VarEPS data.  509 

Also, we appreciate continuing interactions with Dr. Frederic Vitart and his colleagues at 510 

ECMWF.  The Climate Dynamics Division of the National Science Foundation under grant NSF 511 

0826909 provided funding support for this research.512 



 25 

References 513 

Barkmeijer, J., R. Buizza, T. N. Palmer, K. Puri, and J.-F. Mahfouf, 2001: Tropical singular 514 

vectors computed with linearized diabatic physics. Quart. J. Roy. Meteor. Soc., 127, 685–708. 515 

Barnes, Lindsey R., David M. Schultz, Eve C. Gruntfest, Mary H. Hayden, Charles C. Benight, 516 

2009: Corrigendum: false alarm rate or false alarm ratio? Wea. Forecasting, 24, 1452–1454. 517 

doi: 10.1175/2009WAF2222300.1 518 

Belanger, J. I., J. A. Curry, and P. J. Webster, 2010: Predictability of North Atlantic tropical 519 

cyclones on intraseasonal time scales, Mon. Wea. Rev., 138, 4393–4401. 520 

Buizza, R., and T. N. Palmer, 1995: The singular vector structure of the atmospheric global 521 

circulation. J. Atmos. Sci., 52, 1434–1456. 522 

Dupont, T., M. Plu, P. Caroff, and G. Faure, 2011: Verification of ensemble-based uncertainty 523 

circles around tropical cyclone track forecasts, Wea. Forecasting, 26, 664–676. doi: 524 

10.1175/WAF-D-11-00007.1 525 

Hart, R.E., 2003: A cyclone phase space derived from thermal wind and thermal asymmetry. 526 

Mon. Wea. Rev., 131, 585–616. 527 

Holland, G. J., J. Done, C. Bruyere, C. Cooper, and A. Suzuki-Parker, 2010: Model 528 

investigations of the effects of climate variability and change on future Gulf of Mexico tc 529 

activity. Offshore Technology Conference, 20690, 1–13. 530 

Hoyos, C. D. and P. J. Webster, 2007: The Role of intraseasonal variability in the nature of 531 

Asian monsoon precipitation. J. Climate, 20, 4402–4424. 532 

Mason, S. J., and N. E. Graham, 1999: Conditional probabilities, relative operating 533 

characteristics, and relative operating levels. Wea. Forecasting, 14, 713–725. 534 



 26 

Mason,  S.  J.,  2004:  On  using  “climatology”  as  a  reference  strategy  in  the  Brier  and  ranked  535 

probability skill scores. Mon. Wea. Rev., 132, 1891–1895. 536 

Majumdar, Sharanya J., Peter M. Finocchio, 2010: On the Ability of Global Ensemble Prediction 537 

Systems to Predict Tropical Cyclone Track Probabilities. Wea. Forecasting, 25, 659–680. 538 

doi: 10.1175/2009WAF2222327.1 539 

Mirkin, B., 1996: Mathematical Classification and Clustering. Kluwer Academic, 428 pp. 540 

Puri, K., J. Barkmeijer, and T. N. Palmer, 2001: Ensemble prediction of tropical cyclones using 541 

targeted diabatic singular vectors. Quart. J. Roy. Meteor. Soc., 127, 709–734. 542 

Rappaport, Edward N., and Coauthors, 2009: Advances and challenges at the national hurricane 543 

center. Wea. Forecasting, 24, 395–419. doi: 10.1175/2008WAF2222128.1 544 

Tropical cyclone operational plan for the Bay of Bengal and Arabian Sea, World Meteorological 545 

Organization Tech. Document WMO/TD-No. 84, 1–97. [Available from World Meteorological 546 

Organization, Case Postale No. 5, HC-1211, Geneva 20, Switzerland.] 547 

Vitart, F., 2009: Impact of the Madden-Julian Oscillation on tropical storms and risk of landfall 548 

in the ECMWF forecast system. Geophys. Res. Lett., 36, L15802, doi:10.1029/2009GL039089.  549 

Webster, P. J. and C. Hoyos, 2004: Prediction of monsoon rainfall and river discharge on 15-30 550 

day time scales. Bull. Amer. Met. Soc., 85, 1745–1765. 551 

Webster, P. J., 2008: Myanmar’s  deadly  daffodil.  Nature Geoscience, 1, 488–490, 552 

doi:10.1038/ngeo257 553 

554 



 27 

Figure Captions 555 

Figure 1: Schematic of the false alarm clustering routine.  Input variables include PF, tt, xt, Oi (x), 556 

and Ej (x).  PF is the false alarm probability threshold, tt is a time threshold of 120 hrs, 557 
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t 500 (n mi) , Oi (x) contains location and time information for the ith observed TC 558 

during a particular season, Ej (x) is the ECMWF forecast track for the jth ensemble member.  559 

Other variables include ETC j (x) which is the ECMWF forecast track for the jth ensemble member 560 

that corresponds to an observed TC. ETC j (x) is made up of pre-genesis TC forecast tracks,     561 

EPRE-TC j (x) and post-genesis TC forecast tracks, EPOST-TC j (x).  K is the number of clusters 562 

employed in the k–means clustering algorithm, Fk (x) contains the kth false-alarm  cluster’s  mean  563 

location and starting time information.  ECFA j (x) is  the  ‘candidate  false-alarm’  for  each  jth 564 

ECMWF forecast track, EFAC k (x) is the final false-alarm grouping for the kth cluster. 565 

 566 

Figure 2a: Example of the VarEPS forecasts for Severe Cyclone Nargis on 23 April 2008 567 

00UTC, which was 3.75 days prior to tropical cyclone genesis according the JTWC Best Track 568 

dataset.  The black line with red dots denotes the observed track of Nargis.  The thin grey lines 569 

indicate unique ensemble track forecasts from the VarEPS with the thick black (blue) line 570 

denoting the VarEPS ensemble mean (control) track.  Figure 2b: The intensity forecast from the 571 

VarEPS is shown as a probabilistic time series in which color shading denotes percentile 572 

intervals of the VarEPS forecasts ranging from 10 to 90%.  Note: The black line with red dots 573 

denotes the observed intensity of Nargis. 574 

 575 
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Figure 3:  Relative operating characteristic of the VarEPS forecasts for tropical cyclone genesis 576 

during the period 2007–2010.  The color-coded dots correspond to VarEPS tropical cyclone 577 

genesis probabilities (%) ranging from 0 to 100%.  a) ROC is determined as a function of 578 

forecast days in advance using a 48-hour window on the date of TC genesis.  b) Similar to a), 579 

except for a 96-hour window on the date of TC genesis.  c) Similar to a), except the full 360-hour 580 

forecast period is used for the TC genesis evaluation. 581 

 582 

Figure 4: a) Initial ensemble location of each false alarm cluster from 2007 to 2010 using a false 583 

alarm ensemble threshold of 25%.  b) False alarm ratio as a function of increasing false alarm 584 

ensemble probability threshold from 2007 to 2010.  The red line indicates the location where the 585 

false alarm ratio is equivalent to the probability threshold.  c) Cumulative distribution functions 586 

of the false alarm initiation time as a function of forecast lead-time in hours using a false alarm 587 

ensemble threshold of 25%.  The legend in Fig. 4c provides the number of false alarm clusters 588 

that occurred each year.  589 

 590 

Figure 5: a) VarEPS pre-genesis track errors (in n mi) and b) absolute intensity errors (in kts) for 591 

all ensemble forecasts during 2007–2010.  c) VarEPS forecasts of the difference between 592 

forecast time of TC genesis and observations (in days) with values greater (less) than 0 593 

indicating the VarEPS forecasts are sooner (later) than observations.  Note: Values have been 594 

filtered using a 1-day running mean. d) Ensemble spread in the forecast time of TC genesis.  595 

Color shading indicates the percentile ranges for the VarEPS forecasts and the black line is the 596 

VarEPS ensemble mean.  The total number of ensemble forecasts included in the verification is 597 

listed above the abscissa. 598 
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Figure 6: a) VarEPS post-genesis track errors (in n mi) and c) absolute intensity errors (in kts) 599 

for all ensemble forecasts during 2007–2010. Color shading indicates the percentile ranges for 600 

the VarEPS forecasts and the black line is the VarEPS ensemble mean.  The total number of 601 

ensemble forecasts included in the verification is listed above the abscissa.  b) Comparison of 602 

ECMWF control and ensemble mean track errors (in n mi) and d) absolute intensity errors (in 603 

kts) to other global weather models and the Joint Typhoon Warning Center for the period 2007–604 

2010. Initial intensity bias has been removed from each model and the JTWC in Figure 6d. 605 

 606 

Figure 7: Relative operating characteristic for the a) Arabian Sea and b) Bay of Bengal using the 607 

VarEPS forecasts from 2007 to 2010 during the months of April–June and August–December for 608 

various forecast lead-times.  609 

610 
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Tables 611 

Table 1. Brier skill scores (BSS) and relative operating characteristic scores (ROCS) for the 612 

Arabian Sea and the Bay of Bengal based on VarEPS forecasts for tropical cyclone activity 613 

during the months of April–June and August–December for 2007–2010.  BSS (ROCS) in bold 614 

are statistically different from 0 (0.5) at the 95% confidence level. 615 

Arabian Sea Brier Skill Score Relative Operating 
Characteristic Score 

All Forecast Days 0.17 0.82 

Forecast  Days  ≤  2 0.47 0.85 

Forecast Days 2–5 0.32 0.87 

Forecast Days 5–10 0.04 0.82 

Forecast Days 10–15 -0.14 0.70 

Bay of Bengal Brier Skill Score Relative Operating 
Characteristic Score 

All Forecast Days 0.09 0.80 

Forecast  Days  ≤  2 0.30 0.77 

Forecast Days 2–5 0.16 0.79 

Forecast Days 5–10 0.16 0.82 

Forecast Days 10–15 -0.02 0.74 

 616 

617 
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Figures 618 

 619 

Figure 1: Schematic of the false alarm clustering routine.  Input variables include PF, tt, xt, Oi (x), 620 

and Ej (x).  PF is the false alarm probability threshold, tt is a time threshold of 120 hrs, 621 
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t 500 (n mi) , Oi (x) contains location and time information for the ith observed TC 622 

during a particular season, Ej (x) is the ECMWF forecast track for the jth ensemble member.  623 

Other variables include ETC j (x) which is the ECMWF forecast track for the jth ensemble member 624 

that corresponds to an observed TC. ETC j (x) is made up of pre-genesis TC forecast tracks,     625 

EPRE-TC j (x) and post-genesis TC forecast tracks, EPOST-TC j (x).  K is the number of clusters 626 

employed in the k–means clustering algorithm, Fk (x) contains the kth false-alarm  cluster’s  mean  627 

location and starting time information.  ECFA j (x) is  the  ‘candidate  false-alarm’  for  each  jth 628 

ECMWF forecast track, EFAC k (x) is the final false-alarm grouping for the kth cluster.   629 
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 630 

Figure 2a: Example of the VarEPS forecasts for Severe Cyclone Nargis on 23 April 2008 631 

00UTC, which was 3.75 days prior to tropical cyclone genesis according the JTWC Best Track 632 

dataset.  The black line with red dots denotes the observed track of Nargis.  The thin grey lines 633 

indicate unique ensemble track forecasts from the VarEPS with the thick black (blue) line 634 

denoting the VarEPS ensemble mean (control) track.  Figure 2b: The intensity forecast from the 635 

VarEPS is shown as a probabilistic time series in which color shading denotes percentile 636 

intervals of the VarEPS forecasts ranging from 10 to 90%.  Note: The black line with red dots 637 

denotes the observed intensity of Nargis.  638 

639 
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 640 

Figure 3:  Relative operating characteristic of the VarEPS forecasts for tropical cyclone genesis 641 

during the period 2007–2010.  The color-coded dots correspond to VarEPS tropical cyclone 642 

genesis probabilities (%) ranging from 0 to 100%.  a) ROC is determined as a function of 643 

forecast days in advance using a 48-hour window on the date of TC genesis.  b) Similar to a), 644 

except for a 96-hour window on the date of TC genesis.  c) Similar to a), except the full 360-hour 645 

forecast period is used for the TC genesis evaluation. 646 

647 
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 648 

Figure 4: a) Initial ensemble location of each false alarm cluster from 2007 to 2010 using a false 649 

alarm ensemble threshold of 25%.  b) False alarm ratio as a function of increasing false alarm 650 

ensemble probability threshold from 2007 to 2010.  The red line indicates the location where the 651 

false alarm ratio is equivalent to the probability threshold.  c) Cumulative distribution functions 652 

of the false alarm initiation time as a function of forecast lead-time in hours using a false alarm 653 

ensemble threshold of 25%.  The legend in Fig. 4c provides the number of false alarm clusters 654 

that occurred each year.  655 

656 
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 657 

Figure 5: a) VarEPS pre-genesis track errors (in n mi) and b) absolute intensity errors (in kts) for 658 

all ensemble forecasts during 2007–2010.  c) VarEPS forecasts of the difference between 659 

forecast time of TC genesis and observations (in days) with values greater (less) than 0 660 

indicating the VarEPS forecasts are sooner (later) than observations.  Note: Values have been 661 

filtered using a 1-day running mean. d) Ensemble spread in the forecast time of TC genesis.  662 

Color shading indicates the percentile ranges for the VarEPS forecasts and the black line is the 663 

VarEPS ensemble mean.  The total number of ensemble forecasts included in the verification is 664 

listed above the abscissa. 665 
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 666 

Figure 6: a) VarEPS post-genesis track errors (in n mi) and c) absolute intensity errors (in kts) 667 

for all ensemble forecasts during 2007–2010. Color shading indicates the percentile ranges for 668 

the VarEPS forecasts and the black line is the VarEPS ensemble mean.  The total number of 669 

ensemble forecasts included in the verification is listed above the abscissa.  b) Comparison of 670 

ECMWF control and ensemble mean track errors (in n mi) and d) absolute intensity errors (in 671 

kts) to other global weather models and the Joint Typhoon Warning Center for the period 2007–672 

2010.  Initial intensity bias has been removed from each model and the JTWC in Figure 6d. 673 

674 
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 675 

Figure 7: Relative operating characteristic for the a) Arabian Sea and b) Bay of Bengal using the 676 

VarEPS forecasts from 2007 to 2010 during the months of April–June and August–December for 677 

various forecast lead-times.  678 


